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1. Least squares with missing data Consider the least squares problem where we have two random
variables Z and X, such that

z = f(x, θ) + ε, (1)

where f is a polynomial with parameter vector θ

f(x, θ) =
K∑

k=0

θkxk (2)

and ε a Gaussian random variable of zero mean and variance σ2. As before, our goal is to obtain the
ML estimate of the function, given an iid sample D. However, due to a data gathering problem, some
of the zi values are missing. For simplicity, assume that D = {(x1, z1), . . . , (xm, zm), xm+1, . . . xn}, i.e.
the first m observations are complete but only the values of xi are available for the remaining n − m
cases.

a) Write down the function to be minimized when the goal is to compute the ML estimate of the
parameter vector θ with respect to D using standard ML procedures. What is the role of the xi for
which zi is missing? Does this make sense?

b) Derive the EM equations for the ML estimation of the parameter vector θ.

c) Show that EM converges to the value of θ that maxmizes the cost function of a).

d) Can you think of a scenario in which it makes sense to use EM for this problem, instead of the direct
maximization of a)?

2. ML estimation of multivariate t distribution A p dimensional random variable W has a
multivariate t distribution with parameters µ, Σ, and ν if, given the weight u,

PW|U (W|u) = G
(
W, µ,

1
u
Σ

)
where u has a Gamma distribution with parameters (ν

2 , ν
2 ), i.e.

PU (u; ν) =
β

ν
2

Γ(ν
2 )

u
ν
2−1e−

ν
2 u.

The weight u can be integrated to obtain the pdf

PW(w;µ,Σ, ν) =
Γ

(
ν+p

2

)
|Σ|−1/2

(πν)p/2Γ
(

ν
2

)
{1 + 1

ν (w − µ)T Σ−1(w − µ)} 1
2 (ν+p)

but this looks nearly intractable, when the goal is to compute ML estimates. It is an example where,
even though there is no missing data per se, the EM algorithm can still be very handy.
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Given an iid sample D = {w1, . . . ,wn}, consider the problem of obtaining ML estimates for the
parameters µ, and Σ (ν is assumed known). For this, consider the hidden variable U , a sequence
of missing data U = {u1, . . . , un} drawn from it, and derive the steps of the EM algorithms that,
considering (D,U) as complete data, leads to the set of parameters that maximize the likelihood of the
incomplete data D.
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