This HW set contains several problems. Only the problem labeled Quiz must be handed in and will be graded. The remaining problems are for practice. You should not submit them for grade. By submitting your Quiz solution, you agree to comply with the following.

1. The Quiz is treated as a take-home test and is an INDIVIDUAL effort. NO collaboration is allowed. The submitted work must be yours and must be original.

2. The work that you turn-in is your own, using the resources that are available to all students in the class.

3. You can use the help of GENERAL resources on programming, such as MATLAB tutorials, or related activities.

4. You are not allowed to consult or use resources provided by tutors, previous students in the class, or any websites that provide solutions or help in solving assignments and exams.

5. You will not upload your solutions or any other course materials to any web-sites or in some other way distribute them outside the class.

6. 0 points will be assigned if your work seems to violate these rules and, if recurrent, the incident(s) will be reported to the Academic Integrity Office.

1. In this problem we will consider the traditional probability scenario of coin tossing. However, we will consider two variations. First, the coin is not fair. Denoting by S the outcome of the coin toss we have

$$P_S(\text{heads}) = \alpha, \alpha \in [0, 1].$$

Second, you do not observe the coin directly but have to rely on a friend that reports the outcome of the toss. Unfortunately your friend is unreliable, he will sometimes report heads when the outcome was tails and vice-versa. Denoting the report by R we have

$$P_{R|S}(\text{tails}|\text{heads}) = \theta_1 \tag{1}$$

$$P_{R|S}(\text{heads}|\text{tails}) = \theta_2 \tag{2}$$

where $\theta_1, \theta_2 \in [0, 1]$. Your job is to, given the report from your friend, guess the outcome of the toss.

a) Given that your friend reports heads, what is the optimal decision function in the minimum probability of error sense. That is, when should you guess heads, and when should you guess tails?

b) Consider the case $\theta_1 = \theta_2$. Can you give an intuitive interpretation to the rule derived in a)?

c) You figured out that if you ask your friend to report the outcome of the toss various times, he will produce reports that are statistically independent. You then decide to ask him to report the outcome n times, in the hope that this will reduce the uncertainty. (Note: there is still only one coin toss, but the outcome gets reported n times). What is the new minimum probability of error decision rule?
d) Consider the case $\theta_1 = \theta_2$ and assume that the report sequence is all heads. Can you give an intuitive interpretation to the rule derived in c)?

2. Problem 2.2.2 in DHS.

3. Problem 2.5.23 in DHS (feel free to use MATLAB here to compute eigenvalues, matrix vector products, and so forth. The goal is not evaluate your mastery of the mechanics of linear algebra, but to give you an intuitive understanding of what whitening is).

4. Problem 2.9.43 in DHS

5. (Quiz) The goal of this problem is to segment the “cheetah” image (shown below in the left) into its two components, cheetah (foreground) and grass (background).

To formulate this as a pattern recognition problem, we need to decide on an observation space. Here we will be using the space of 8×8 image blocks, i.e. we view each image as a collection of 8×8 blocks. For each block we compute the discrete cosine transform (function dct2 on MATLAB) and obtain an array of 8×8 frequency coefficients. We do this because the cheetah and the grass have different textures, with different frequency decompositions and the two classes should be better separated in the frequency domain. We then convert each 8×8 array into a 64 dimensional vector because it is easier to work with vectors than with arrays. The file Zig-Zag Pattern.txt contains the position (in the 1D vector) of each coefficient in the 8×8 array. The file TrainingSamplesDCT_8.mat contains a training set of vectors obtained from a similar image (stored as a matrix, each row is a training vector) for each of the classes. There are two matrices, TrainsampleDCT_BG and TrainsampleDCT_FG for foreground and background samples respectively.

To make the task of estimating the class conditional densities easier, we are going to reduce each vector to a scalar. For this, for each vector, we compute the index (position within the vector) of the coefficient that has the 2nd largest energy value (absolute value). This is our observation or feature X. (The reason we do not use the coefficient with the largest energy is that it is always the so-called “DC” coefficient, which contains the mean of the block). By building an histogram of these indexes we obtain the class-conditionals for the two classes $P_X|Y(x|\text{cheetah})$ and $P_X|Y(x|\text{grass})$. The priors $P_Y(\text{cheetah})$ and $P_Y(\text{grass})$ should also be estimated from the training set.

a) using the training data in TrainingSamplesDCT_8.mat, what are reasonable estimates for the prior probabilities?

b) using the training data in TrainingSamplesDCT_8.mat, compute and plot the index histograms $P_X|Y(x|\text{cheetah})$ and $P_X|Y(x|\text{grass})$.

c) for each block in the image cheetah.bmp, compute the feature X (index of the DCT coefficient with 2nd greatest energy). Compute the state variable Y using the minimum probability of error rule based on the probabilities obtained in a) and b). Store the state in an array A. Using the commands imagesc and colormap(gray(255)) create a picture of that array.

d) The array A contains a mask that indicates which blocks contain grass and which contain the cheetah. Compare it with the ground truth provided in image cheetah_mask.bmp (shown below on the right) and compute the probability of error of your algorithm.

Notes:
• in *TrainingSamplesDCT_8.mat* each matrix row contains the “zig-zag scanned” vector of coefficients. So, for a) and b) you do not need to compute the DCT, etc.

• the training data that we provide was created by representing images as doubles in the range \([0, 1]\). You need to represent the image in the same way, in order to have consistency between the train and test sets. This can be done by using the commands `im2double(img)` or `double(img)/255` on MATLAB (where `img` is the array that contains the image as read from `cheetah.bmp`).

• in *Zig-Zag Pattern.txt* the zig-zag pattern goes from 0 to 63, not 1 to 64. Please remember this as MATLAB starts indexes from 1. (You can just add 1 to the numbers in the file to get to the MATLAB coordinates).