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Announcement
last week of classes we will have 
“Cheetah Day” (exact day TBA)y ( y )
what:
• 4 teams of 6 people
• each team will write a report on the 4 

cheetah problems
• each team will give a presentation on oneeach team will give a presentation on one 

of the problems

why: 
• to make sure that we get the “big picture”

out of all this work
• presenting is always good practice
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Announcement
how much:
• 10% of the final grade (5% report 5%10% of the final grade (5% report, 5% 

presentation)

what to talk about:
• report: comparative analysis of all solutions 

of the problem (8 page)
• as if you were writing a conference papery g p p
• presentation: will be on one single problem

• review what solution was
• what did this problem taught us about 

learning?
• what “tricks” did we learn solving it?
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• how well did this solution do compared to 
others?



Announcement
details:
• get together and form groupsget together and form groups
• let me know what they are by Wednesday 

(November 19)  (email is fine)
• I will randomly assign the problem on 

which each group has to be expert
• prepare a talk for 20min (max 10 slides)
• feel free to use my solutions, your results
• feel free to go beyond what we have done 

(e g search over features whatever )(e.g. search over features, whatever…)
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Plan for today
we have talked a lot about the BDR and methods based 
on density estimationy
practical densities are not well approximated by simple 
probability models
today: what can we do if have complicated densities?
• use better probability density models!
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Non-parametric density estimates
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Binomial random variable 

N 10 100 1,000 …
Var[P] < 0 025 0 0025 0 00025
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Var[P] <  0.025 0.0025 0.00025



Histogram 
this means that k/n is a very good estimate of P
on the other hand, from the mean value theorem, if PX(x) is , , X( )
continuous

this is  easiest to see in 1D PX(ε)
PX(x)

• can always find a box such that
the integral of the function is equal
to that of the box

PX(ε)

• since PX(x) is continuous there
must be a ε such that PX(ε)
is the box height

xε
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Histogram 
hence

i ti it f P ( ) i d i R i llusing continuity of PX(x) again and assuming R is small

this is the histogram
it is the simplest possible non-parametric estimator
can be generalized into kernel-based density estimator

9



Kernel density estimates
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Kernel density estimates
this means that the histogram can be written as

hi h i i l t twhich is equivalent to:
• “put a box around X for each Xi that lands 

on the hypercube”
• can be seen as a very crude form of 

interpolation
• better interpolation if contribution of Xi• better interpolation if contribution of Xi

decreases with distance to X

consider other windows φ(x)
x xx x
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Windows
what sort of functions are valid windows?
note that P (x) is a pdf if and only ifnote that PX(x) is a pdf if and only if

since

these conditions hold if φ(x) is itself a pdf
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Gaussian kernel
probably the most popular in practice

t th t P ( ) l bnote that PX(x) can also be seen as a 
sum of pdfs centered on the Xi when 
φ(x) is symmetric in X and Xi
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Gaussian kernel
Gaussian case can be interpreted as
• sum of n Gaussians centered at the Xi withsum of n Gaussians centered at the Xi with

covariance hI
• more generally, we can have a full 

covariancecovariance

sum of n Gaussians centered at the Xi with covariance Σsum of n Gaussians centered at the Xi with covariance Σ
Gaussian kernel density estimate: “approximate the pdf of 
X with a sum of Gaussian bumps”
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Kernel bandwidth
back to the generic model

h t i th l f h (b d idth t )?what is the role of h (bandwidth parameter)?
defining

we can write
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i.e. a sum of translated replicas of δ(x)



Kernel bandwidth
h has two roles:
1 rescale the x-axis1. rescale the x-axis
2. rescale the amplitude of δ(x)

this implies that for large h:p g
1. δ(x) has low amplitude
2. iso-contours of h are quite distant from zero 

(x large before φ(x/h) changes significantly from φ(0))(x large before φ(x/h) changes significantly from φ(0))
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Kernel bandwidth
for small h:
1 δ(x) has large amplitude1. δ(x) has large amplitude
2. iso-contours of h are quite close to zero 

(x small before φ(x/h) changes significantly from φ(0))

what is the impact of this on the quality of the density 
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Kernel bandwidth
it controls the smoothness of the estimate
• as h goes to zero we have a sum of delta functions (very “spiky”as h goes to zero we have a sum of delta functions (very spiky  

approximation)
• as h goes to infinity we have a sum of constant functions

(approximation by a constant)(approximation by a constant)
• in between we get approximations that are gradually more 

smooth
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Kernel bandwidth
why does this matter?
when the density estimates are plugged into the BDRwhen the density estimates are plugged into the BDR
smoothness of estimates determines the smoothness of 
the boundaries

less smooth more smooth

this affects the probability of error!
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this affects the probability of error!



Convergence
since Px(x) depends on the sample points Xi, it is a 
random variable
as we add more points, the estimate should get “better”
the question is then whether the estimate ever convergesq g
this is no different than parameter estimation
as before, we talk about convergence in probability, g p y
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Convergence of the mean
from the linearity of PX(x) on the kernels

21



Convergence of the mean
hence

thi i th l ti f P ( ) ith δ( )this is the convolution of PX(x) with δ(x)
it is a blurred version (“low-pass filtered”) unless h = 0
i thi δ( ) t th Di d lt din this case δ(x-v) converges to the Dirac delta and so
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Convergence of the variance
since the Xi are iid
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Convergence
in summary

this means that:
• to obtain small bias we need h ~ 0to obtain small bias we need h  0
• to obtain small variance we need h infinite
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Convergence
intuitively makes sense
• h ~ 0 means a Dirac around each pointh  0 means a Dirac around each point
• can approximate any function arbitrarily well
• there is no bias
• but if we get a different sample, the estimate is likely to be very 

different
• there is large variancethere is large variance
• as before, variance can be decreased by getting a larger sample
• but, for fixed n, smaller h  always means greater variability

example: fit to N(0,I) using h = h1/n1/2
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Example
small h: spiky
need a lot ofneed a lot of 
points to converge 
(variance)

large h: 
approximatepp
N(0,I) with a sum 
of Gaussians of 
larger covariancelarger covariance
will never have 
zero error (bias)
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Optimal bandwidth
we would like
• h ~ 0 to guarantee zero biasg
• zero variance as n goes to infinity

solution:
• make h a function of n that goes to zero
• since variance is O(1/nhd) this is fine if nhd goes to infinity

h dhence, we need

optimal sequences exist, e.g.
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Optimal bandwidth
in practice this has limitations
• does not say anything about the finite data case (the one we y y g (

care about)
• still have to find the best k

ll d i t i l d t h iusually we end up using trial and error or techniques 
like cross-validation
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Cross-validation
basic idea:
• leave some data out of your training set (cross validation set)y g ( )
• train with different parameters
• evaluate performance on cross validation set
• pick best parameter configuration

training set xval set training testing

test set
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Leave-one-out cross-validation
many variations
leave one out CV:leave-one-out CV:
• compute n estimators of PX(x) by leaving one Xi out at a time
• for each PX(x) evaluate PX(Xi) on the point that was left outX( ) X( i) p
• pick PX(x) that maximizes this likelihood 

testing

test set

g

...
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