Kernel-based density estimation

Nuno Vasconcelos ECE Department, UCSD

Announcement

- Iast week of classes we will have "Cheetah Day" (exact day TBA)
- ► what:
 - 4 teams of 6 people
 - each team will write a report on the 4 cheetah problems
 - each team will give a presentation on one of the problems

► why:

- to make sure that we get the "big picture" out of all this work
- presenting is always good practice

Announcement

- how much:
 - 10% of the final grade (5% report, 5% presentation)
- what to talk about:
 - report: comparative analysis of all solutions of the problem (8 page)
 - as if you were writing a conference paper
 - presentation: will be on one single problem
 - review what solution was
 - what did this problem taught us about learning?
 - what "tricks" did we learn solving it?
 - how well did this solution do compared to others?

Announcement

details:

- get together and form groups
- let me know what they are by Wednesday (November 19) (email is fine)
- I will randomly assign the problem on which each group has to be expert
- prepare a talk for 20min (max 10 slides)
- feel free to use my solutions, your results
- feel free to go beyond what we have done (e.g. search over features, whatever...)

Plan for today

- we have talked a lot about the BDR and methods based on density estimation
- practical densities are not well approximated by simple probability models
- today: what can we do if have complicated densities?
 - use better probability density models!

Non-parametric density estimates

▶ Given iid training set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, the goal is to estimate

 $P_{\mathbf{X}}(\mathbf{x})$

 \blacktriangleright Consider a region $\mathcal{R},$ and define

$$P = P_{\mathbf{X}}[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

and define

$$K = \sharp \{ \mathbf{x}_i \in \mathcal{D} | \mathbf{x}_i \in \mathcal{R} \}.$$

 \blacktriangleright This is a binomial distribution of paramter P

$$P_K(k) = \mathcal{B}(n, P)$$

= $\binom{n}{k} P^k (1-P)^{n-k}$

Binomial random variable

ML estimate of P

$$\hat{P} = \frac{k}{n}.$$

and statistiscs

$$E[\hat{P}] = \frac{1}{n}E[k] = \frac{1}{n}nP = P$$
$$var[\hat{P}] = \frac{1}{n^2}var[k] = \frac{P(1-P)}{n}.$$

Note that $var[\hat{P}] \leq 1/4n$ goes to zero very quickly, i.e.

$$\hat{P} \to P.$$

N	10	100	1,000	
Var[P] <	0.025	0.0025	0.00025	

Histogram

- this means that k/n is a very good estimate of P
- ▶ on the other hand, from the mean value theorem, if $P_X(x)$ is continuous $\exists \epsilon \in \mathcal{R}$ such that

$$P = \int_{\mathcal{R}} P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = P_{\mathbf{X}}(\epsilon) \int_{\mathcal{R}} d\mathbf{x} = P_{\mathbf{X}}(\epsilon) V(\mathcal{R}).$$

this is easiest to see in 1D

- can always find a box such that the integral of the function is equal to that of the box
- since P_χ(x) is continuous there must be a ε such that P_χ(ε) is the box height

Histogram

► hence

$$P_{\mathbf{X}}(\epsilon) = \frac{P}{V(\mathcal{R})} \approx \frac{\hat{P}}{V(\mathcal{R})} = \frac{k}{nV(\mathcal{R})}$$

• using continuity of $P_X(x)$ again and assuming R is small

$$P_{\mathbf{X}}(\mathbf{x}) \approx \frac{k}{nV(\mathcal{R})}, \ \forall \mathbf{x} \in V(\mathcal{R})$$

- this is the histogram
- ▶ it is the simplest possible non-parametric estimator
- can be generalized into kernel-based density estimator

Kernel density estimates

 \blacktriangleright assume ${\mathcal R}$ is the d-dimensional cube of side h

$$V = h^d$$

and define *indicator* function of the unit hypercube

$$\phi(\mathbf{u}) = \begin{cases} 1, & \text{if } |u_i| < 1/2 \\ 0, & \text{otherwise.} \end{cases}$$

hence

$$\phi\left(\frac{\mathbf{x}-\mathbf{x}_i}{h}\right) = 1$$

iif $\mathbf{x}_i \in \mathsf{hypercube}$ of volume V centered at \mathbf{x} .

the number of sample points in the hypercube is

$$k_n = \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Kernel density estimates

this means that the histogram can be written as

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^{n} \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- which is equivalent to:
 - "put a box around X for each X_i that lands on the hypercube"
 - can be seen as a very crude form of interpolation
 - better interpolation if contribution of X_i decreases with distance to X
- consider other windows $\phi(x)$

Windows

what sort of functions are valid windows?

• note that $P_X(x)$ is a pdf if and only if

$$P_{\mathbf{X}}(\mathbf{x}) \ge 0, \forall \mathbf{x} \text{ and } \int P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = 1$$

$$\blacktriangleright \text{ since } \int P_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = \frac{1}{nh^d} \sum_{i=1}^n \int \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) d\mathbf{x}$$

$$= \frac{1}{nh^d} \sum_{i=1}^n \int \phi(\mathbf{y}) h^d d\mathbf{y}$$

$$= \frac{1}{n} \sum_{i=1}^n \int \phi(\mathbf{y}) d\mathbf{y}$$

► these conditions hold if $\phi(\mathbf{x})$ is itself a pdf $\phi(\mathbf{x}) \ge 0, \forall \mathbf{x} \text{ and } \int \phi(\mathbf{x}) d\mathbf{x} = 1$

Gaussian kernel

probably the most popular in practice

$$\phi(\mathbf{x}) = \frac{1}{\sqrt{2\pi^d}} e^{-\frac{1}{2}\mathbf{x}^T\mathbf{x}}$$

note that P_X(x) can also be seen as a sum of pdfs centered on the X_i when φ(x) is symmetric in X and X_i

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^{n} \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Gaussian kernel

Gaussian case can be interpreted as

- sum of *n* Gaussians centered at the X_i with covariance *h*
- more generally, we can have a full covariance

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^d} |\mathbf{\Sigma}|} e^{-\frac{1}{2} (\mathbf{x} - \mathbf{x}_i)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{x}_i)}$$

• sum of *n* Gaussians centered at the X_i with covariance Σ

Gaussian kernel density estimate: "approximate the pdf of X with a sum of Gaussian bumps"

back to the generic model

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n \phi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

what is the role of h (bandwidth parameter)?

defining

$$\delta(\mathbf{x}) = \frac{1}{h^d} \phi\left(\frac{\mathbf{x}}{h}\right)$$

▶ we can write

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \delta(\mathbf{x} - \mathbf{x}_i)$$

▶ i.e. a sum of translated replicas of $\delta(x)$

- *h* has two roles:
 - 1. rescale the x-axis
 - 2. rescale the amplitude of $\delta(x)$
- ► this implies that for large *h*:
 - 1. $\delta(x)$ has low amplitude
 - 2. iso-contours of *h* are quite distant from zero $(x \text{ large before } \phi(x/h) \text{ changes significantly from } \phi(0))$

 $\delta(\mathbf{x}) = \frac{1}{h^d} \phi\left(\frac{\mathbf{x}}{h}\right)$

▶ for small *h*:

1. $\delta(x)$ has large amplitude

$$\delta(\mathbf{x}) = \frac{1}{h^d} \phi\left(\frac{\mathbf{x}}{h}\right)$$

2. iso-contours of *h* are quite close to zero (*x* small before $\phi(x/h)$ changes significantly from $\phi(0)$)

what is the impact of this on the quality of the density estimates?

- ▶ it controls the smoothness of the estimate
 - as h goes to zero we have a sum of delta functions (very "spiky" approximation)
 - as h goes to infinity we have a sum of constant functions (approximation by a constant)
 - in between we get approximations that are gradually more smooth

- why does this matter?
- when the density estimates are plugged into the BDR
- smoothness of estimates determines the smoothness of the boundaries

this affects the probability of error!

Convergence

- since $P_x(x)$ depends on the sample points X_i , it is a random variable
- as we add more points, the estimate should get "better"
- the question is then whether the estimate ever converges
- this is no different than parameter estimation
- ► as before, we talk about convergence in probability
- $\widehat{P}_{\mathbf{X}}(\mathbf{x})$ converges to $P_{\mathbf{X}}(\mathbf{x})$ if

$$\lim_{n \to \infty} E_{\mathbf{X}_1, \dots, \mathbf{X}_n}[\hat{P}_{\mathbf{X}}(\mathbf{x})] = \hat{P}_{\mathbf{X}}(\mathbf{x})$$
$$\lim_{n \to \infty} var_{\mathbf{X}_1, \dots, \mathbf{X}_n}[\hat{P}_{\mathbf{X}}(\mathbf{x})] = 0$$

Convergence of the mean

From the linearity of $P_X(x)$ on the kernels

$$E_{\mathbf{X}_{1},\dots\mathbf{X}_{n}}[\widehat{P}_{\mathbf{X}}(\mathbf{x})] =$$

$$= \frac{1}{nh^{d}} \sum_{i=1}^{n} E_{\mathbf{X}_{i}} \left[\phi \left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int \frac{1}{h^{d}} \phi \left(\frac{\mathbf{x} - \mathbf{v}}{h} \right) P_{\mathbf{X}}(\mathbf{v}) d\mathbf{v}$$

$$= \int \frac{1}{h^{d}} \phi \left(\frac{\mathbf{x} - \mathbf{v}}{h} \right) P_{\mathbf{X}}(\mathbf{v}) d\mathbf{v}$$

$$= \int \delta(\mathbf{x} - \mathbf{v}) P_{\mathbf{X}}(\mathbf{v}) d\mathbf{v}$$

Convergence of the mean

hence

$$E_{\mathbf{X}_1,\dots,\mathbf{X}_n}[\hat{P}_{\mathbf{X}}(\mathbf{x})] = \int \delta(\mathbf{x} - \mathbf{v}) P_{\mathbf{X}}(\mathbf{v}) d\mathbf{v}$$

- this is the convolution of $P_X(x)$ with $\delta(x)$
- it is a blurred version ("low-pass filtered") unless h = 0
- in this case $\delta(x-v)$ converges to the Dirac delta and so

$$\lim_{h\to 0} E_{\mathbf{X}_1,\ldots,\mathbf{X}_n}[\widehat{P}_{\mathbf{X}}(\mathbf{x})] = P_{\mathbf{X}}(\mathbf{x})$$

Convergence of the variance

• since the X_i are iid

$$\begin{aligned} \operatorname{var}_{\mathbf{X}_{1},\ldots,\mathbf{X}_{n}}[\widehat{P}_{\mathbf{X}}(\mathbf{x})] &= \\ &= \sum_{i=1}^{n} \operatorname{var}_{\mathbf{X}_{i}} \left[\frac{1}{nh^{d}} \phi \left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right) \right] \\ &\leq n E_{\mathbf{X}} \left[\frac{1}{n^{2}h^{2d}} \phi^{2} \left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right) \right] \\ &= \frac{1}{nh^{d}} \int \frac{1}{h^{d}} \phi^{2} \left(\frac{\mathbf{x} - \mathbf{v}}{h} \right) P_{\mathbf{X}}(\mathbf{v}) d\mathbf{v} \\ &\leq \frac{1}{nh^{d}} \sup \left[\phi \left(\frac{\mathbf{x}}{h} \right) \right] \int \frac{1}{h^{d}} \phi \left(\frac{\mathbf{x} - \mathbf{v}}{h} \right) P_{\mathbf{X}}(\mathbf{v}) d\mathbf{v} \\ &= \frac{1}{nh^{d}} \sup \left[\phi \left(\frac{\mathbf{x}}{h} \right) \right] E_{\mathbf{X}_{1},\ldots,\mathbf{X}_{n}}[\widehat{P}_{\mathbf{X}}(\mathbf{x})] \end{aligned}$$

Convergence

▶ in summary

$$E_{\mathbf{X}_{1},...\mathbf{X}_{n}}[\hat{P}_{\mathbf{X}}(\mathbf{x})] = \delta(\mathbf{x}) \odot P_{\mathbf{X}}(\mathbf{x})$$
$$var_{\mathbf{X}_{1},...\mathbf{X}_{n}}[\hat{P}_{\mathbf{X}}(\mathbf{x})] =$$
$$\leq \frac{1}{nh^{d}} \sup \left[\phi\left(\frac{\mathbf{x}}{h}\right)\right] E_{\mathbf{X}_{1},...\mathbf{X}_{n}}[\hat{P}_{\mathbf{X}}(\mathbf{x})]$$

this means that:

- to obtain small bias we need $h \sim 0$
- to obtain small variance we need h infinite

Convergence

- intuitively makes sense
 - $h \sim 0$ means a Dirac around each point
 - can approximate any function arbitrarily well
 - there is no bias
 - but if we get a different sample, the estimate is likely to be very different
 - there is large variance
 - as before, variance can be decreased by getting a larger sample
 - but, for fixed *n*, smaller h always means greater variability

• example: fit to N(0,I) using $h = h_1/n^{1/2}$

Example

- small h: spiky
- need a lot of points to converge (variance)
- ► large h:

approximate N(0,I) with a sum of Gaussians of larger covariance

will never have zero error (bias)

Optimal bandwidth

▶ we would like

- $h \sim 0$ to guarantee zero bias
- zero variance as *n* goes to infinity
- solution:
 - make h a function of n that goes to zero
 - since variance is $O(1/nh^d)$ this is fine if nh^d goes to infinity
- hence, we need

$$\lim_{n\to\infty}h(n)=0 \text{ and } \lim_{n\to\infty}nh(n)\infty$$

optimal sequences exist, e.g.

$$h(n) = \frac{k}{\sqrt{n}}$$
 or $h(n) = \frac{k}{\log n}$

Optimal bandwidth

▶ in practice this has limitations

- does not say anything about the finite data case (the one we care about)
- still have to find the best k
- usually we end up using trial and error or techniques like cross-validation

Cross-validation

- ▶ basic idea:
 - leave some data out of your training set (cross validation set)
 - train with different parameters
 - evaluate performance on cross validation set
 - pick best parameter configuration

Leave-one-out cross-validation

many variations

leave-one-out CV:

- compute n estimators of $P_X(x)$ by leaving one X_i out at a time
- for each $P_X(x)$ evaluate $P_X(X_i)$ on the point that was left out
- pick $P_X(x)$ that maximizes this likelihood

Ny Questions: