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Recall
last class, we will have “Cheetah Day”
what:what:
• 4 teams, average of 6 people
• each team will write a report on the 4 p

cheetah problems
• each team will give a presentation on one 

of the problemsp

I am waiting to hear on the teams
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Plan for today
we have talked a lot about the BDR and methods based 
on density estimationy
practical densities are not well approximated by simple 
probability models
last lecture: alternative way is to go non-parametric
• kernel-based density estimates
• “place a a pdf (kernel) on top of datapoint”  

today: mixture models
• similar but restricted number of kernels• similar, but restricted number of kernels
• likelihood evaluation significantly simpler
• parameter estimation much more complex
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Kernel density estimates
estimate density with

h φ( ) i k l th twhere φ(x) is a kernel, the most 
popular is the Gaussian

sum of n Gaussians centered at Xsum of n Gaussians centered at Xi

Gaussian kernel density estimate:
• “approximate the pdf of X with a sum of Gaussian bumps”
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approximate the pdf of X with a sum of Gaussian bumps



Kernel bandwidth
back to the generic model

h t i th l f h (b d idth t )?what is the role of h (bandwidth parameter)?
defining

we can write
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i.e. a sum of translated replicas of δ(x)



Kernel bandwidth
h has two roles:
1 rescale the x-axis1. rescale the x-axis
2. rescale the amplitude of δ(x)

this implies that for large h:p g
1. δ(x) has low amplitude
2. iso-contours of h are quite distant from zero 

(x large before φ(x/h) changes significantly from φ(0))(x large before φ(x/h) changes significantly from φ(0))
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Kernel bandwidth
for small h:
1 δ(x) has large amplitude1. δ(x) has large amplitude
2. iso-contours of h are quite close to zero 

(x small before φ(x/h) changes significantly from φ(0))

what is the impact of this on the quality of the density 
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estimates?



Kernel bandwidth
it controls the smoothness of the estimate
• as h goes to zero we have a sum of delta functions (very “spiky”as h goes to zero we have a sum of delta functions (very spiky  

approximation)
• as h goes to infinity we have a sum of constant functions

(approximation by a constant)(approximation by a constant)
• in between we get approximations that are gradually more 

smooth
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Bias and variance
the bias and variance are given by

this means that:
• to obtain small bias we need h ~ 0to obtain small bias we need h  0
• to obtain small variance we need h infinite
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Example
example: fit to 
N(0,I) using h = 
h /n1/2h1/n1/2

small h: spiky
need a lot ofneed a lot of 
points to converge 
(variance)
large hlarge h: 
approximate
N(0,I) with a sum 
of Gaussians ofof Gaussians of 
larger covariance
will never have 

(bi )
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zero error (bias)



Optimal bandwidth
we would like
• h ~ 0 to guarantee zero biasg
• zero variance as n goes to infinity

solution:
• make h a function of n that goes to zero
• since variance is O(1/nhd) this is fine if nhd goes to infinity

h dhence, we need

optimal sequences exist, e.g.
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Optimal bandwidth
in practice this has limitations
• does not say anything about the finite data case (the one we y y g (

care about)
• still have to find the best k

ll d i t i l d t h iusually we end up using trial and error or techniques 
like cross-validation
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Cross-validation
basic idea:
• leave some data out of your training set (cross validation set)y g ( )
• train with different parameters
• evaluate performance on cross validation set
• pick best parameter configuration

training set xval set training testing

test set
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training set



Leave-one-out cross-validation
many variations
leave one out CV:leave-one-out CV:
• compute n estimators of PX(x) by leaving one Xi out at a time
• for each PX(x) evaluate PX(Xi) on the point that was left outX( ) X( i) p
• pick PX(x) that maximizes this likelihood 

testing

test set

g

...
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Non-parametric classifiers
given kernel density estimates for all classes we can 
compute the BDRp
since the estimators are non-parametric the resulting 
classifier will also be non-parametric
this term is general and applies to any learning algorithm
a very simple example is the nearest neighbor classifier
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Nearest neighbor classifier
is the simplest possible classifier that one could think of:

• it literally consists of assigning to the vector to classify the label ofit literally consists of assigning to the vector to classify the label of 
the closest vector in the training set

• to classify the red point:to classify the red point:
• measure the distance

to all other points
• if the closest point• if the closest point

is a square, assign
to “square” class

• otherwise assigng
to “circle” class

it works a lot better
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than what one might predict



Nearest neighbor classifier
to define it mathematically we need to define
• a training set D = {(x1,y1), …, (xn,yn)}

• xi is a vector of observations, yi is the label
• a vector x to classify

the “decision rule” isthe decision rule  is 

    *iyyset =

),(minarg* ixxdi
where

=
},...,1{ ni∈
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k-nearest neighbors
instead of the NN, assigns to the majority vote of the k 
nearest neighbors
in this example
• NN rule says “A”
• but 3 NN rule• but 3-NN rule

says “B”

for x away from the
border does not make
much difference
usually best performanceusually best performance
for k > 1, but there is no universal number
k large: performance degrades (no longer neighbors)
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g p g ( g g )
k should be odd, to prevent ties



Mixture density estimates
back to BDR-based classifiers
consider the bridge trafficconsider the bridge traffic 
analysis problem 
summary:y
• want to classify vehicles 

into commercial/private
hi l i ht• measure vehicle weight

• estimate pdf
• use BDR

clearly this is not Gaussian
possible solution: use a kernel-based model
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Kernel-based estimate
simple learning procedure
• measure car weights xi

bandwidth too large: bias
measure car weights xi

• place a Gaussian on top of each 
measurement

can be overkill
• spending all degrees of freedom (# 

of training points) just to get the g p ) j g
Gaussian means

• cannot use the data to determine 
variances

bandwidth too small: variance

variances

handpicking of bandwidth can 
lead to too much bias or 

i
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variance



mixture density estimate
it looks like we could do better by
just picking the right # of 
G iGaussians

this is indeed  a good model:
• density is multimodal because there 

is a hidden variable Z
• Z determines the type of car

z ∈ {compact, sedan, station wagon, pick up, van}

• for a given car type the weight is approximately Gaussian (or has some• for a given car type the weight is approximately Gaussian (or has some 
other parametric form)

• the density is a “mixture of Gaussians”
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mixture model
two types of random variables
• Z – hidden state variable

PZ(z)

zZ – hidden state variable
• X – observed variable

observations sampled with a 

zi

p
two-step procedure
• a state (class) is sampled from the

distribution of the hidden variable
PX|Z(x|0) PX|Z(x|1) PX|Z(x|K)…

distribution of the hidden variable

PZ(z)   →   zi
xi

• an observation is drawn from the class conditional density for 
the selected state

22

PX|Z(x|zi)   → xi



mixture model
the sample consists of pairs (xi,zi)

D = {(x z ) (x z )}D = {(x1,z1), …, (xn,zn)}
but we never get to see the zi

e.g. bridge example:e.g. bridge example:
• sensor only registers weight
• the car class was certainly there, but it is lost by the sensor
• for this reason Z is called hidden

the pdf of the observed data is # of mixture components

component “weight”
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cth “mixture component”



mixtures vs kernels
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mixtures vs parametric models

any parametric model is a mixture of 1 component
the eight is 1• the weight is 1

• the mixture component is the parametric density itself

mixtures provide a connection between these two 
extreme models

parametric

C=1

kernel-based

C=n

mixture of C components
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mixture advantages
with respect to parametric estimates
• more degrees of freedom (parameters) ⇒ less bias• more degrees of freedom (parameters) ⇒ less bias

with respect to kernel estimates
• much smaller # of components ⇒ less parameters, less variancep p ,

small variance, large bias large variance, small bias

parametric

C=1

kernel-based

C=n

mixture of C components

for the mixture we can learn both means and covariances 
(or whatever parameters) from the data
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this usually leads to a better fit!



mixture disadvantages
main disadvantage is learning complexity
non parametric estimatesnon-parametric estimates
• simple: store the samples (NN); place a kernel on top of each 

point (kernel-based)

parametric estimates
• small amount of work: if ML equations have closed-form
• substantial amount of work: otherwise (numerical solution)

mixtures:
there is usually no closed form solution• there is usually no closed-form solution

• always need to resort to numerical procedures

standard tool is the expectation-maximization (EM)
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standard tool is the expectation maximization (EM)
algorithm



The basics of EM
as usual, we start from an iid sample D = {x1,…,xn}
two types of random variablestwo types of random variables
• X observed random variable
• Z hidden random variable

joint density of X and Z is parameterized by Ψ

P ( Ψ)PXZ(x,z;Ψ)
goal is to find parameters Ψ* that maximize likelihood with 
respect to Drespect to D
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Complete vs incomplete data
the set

D = {(x z ) (x z )}Dc = {(x1,z1), …, (xn,zn)}

is called the complete data
th tthe set 

D = {x1, …, xn}
i ll d th i l t d tis called the incomplete data
in general, the problem would be trivial if we had access 
to the complete datato the complete data
to see this let’s consider a specific example
• Gaussian mixture of C components
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Gaussian mixture of C components
• parameters Ψ = {(π1,µ1,Σ1), …,(πC,µC,ΣC)}



Learning with complete data
given the complete data Dc, we only have to split the 
training set according to the labels zig g i

D1 = {xi|zi=1},    D2 = {xi|zi=2},   …   , DC = {xi|zi=C}

the likelihood of the complete data isthe likelihood of the complete data is
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Learning with complete data
the optimal parameters are

i h t l d d Dc d ( Σ ) thisince each term only depends on Dc and (πc,µc,Σc) this 
can be simplified into

and we have a collection of C very familiar maximumand we have a collection of C very familiar maximum 
likelihood problems (HW 2)

• ML estimate of the Gaussian parameters
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• ML estimate of the class probabilities



Learning with complete data
the solution is

hence, all the hard work seems to be in figuring out what 
the zi are
the EM algorithm does this iterati el
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the EM algorithm does this iteratively



Learning with incomplete data (EM)
the basic idea is quite simple
1 start with an initial parameter estimate Ψ(0)1. start with an initial parameter estimate Ψ( )

2. E-step: given current parameters Ψ(i) and observations in D, 
“guess” what the values of the zi are

3. M-step: with the new zi, we have a complete data problem, 
solve this problem for the parameters, i.e. compute Ψ(i+1)

4. go to 2. 

this can be summarized as

E-step

estimate
parameters

fill in class
assignments

zi

p
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M-step
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