Mixture density estimation

Nuno Vasconcelos
ECE Department, UCSD

Recall

» last class, we will have “Cheetah Day”
» Wwhat:

e 4 teams, average of 6 people

» each team will write a report on the 4
cheetah problems

« each team will give a presentation on one
of the problems

» | am waiting to hear on the teams

Plan for today

» we have talked a lot about the BDR and methods based
on density estimation

» practical densities are not well approximated by simple
probability models

» last lecture: alternative way is to go non-parametric
» kernel-based density estimates
» “place a a pdf (kernel) on top of datapoint”

» today: mixture models
* similar, but restricted number of kernels

 likelihood evaluation significantly simpler
e parameter estimation much more complex

Kernel density estimates

» estimate density with

P =i 3o (57)

» where ¢(x) is a kernel, the most
popular is the Gaussian

1 1,7
) = e 3

» sum of n Gaussians centered at X;

X

» Gaussian kernel density estimate:

« “approximate the pdf of X with a sum of Gaussian bumps”

Kernel bandwidth

» back to the generic model
1 & X — X;
Pxe0 =5 X 055

» what is the role of h (bandwidth parameter)?

» defining

0= 13

» \We can write
1 T
Px(x) = > 6 (x—x4)
i=1

» i.e. a sum of translated replicas of &x)

Kernel bandwidth

» h has two roles:

1 X
1. rescale the x-axis o(x) = _d¢ <_)
2. rescale the amplitude of &x) h h

» this implies that for large h:

1. o(X) has low amplitude

2. 1so-contours of h are quite distant from zero
(x large before ¢(x/h) changes significantly from ¢#(0))

L Bom 5 A=

Kernel bandwidth
» for small h: i(x) = iqb (E)

d
1. d(X) has large amplitude h

2. 1so-contours of h are quite close to zero
(x small before ¢(x/h) changes significantly from ¢(0))

» what is the impact of this on the quality of the density
estimates?

Kernel bandwidth

» It controls the smoothness of the estimate

« as h goes to zero we have a sum of delta functions (very “spiky”
approximation)

e as h goes to infinity we have a sum of constant functions
(approximation by a constant)

* In between we get approximations that are gradually more
smooth

Bias and variance

» the bias and variance are given by
Ex, x,[Px(x)] = ()06 Px(x)
varx, x,[Px(x)] =

< 1 X N
= WSUD [Cb (H)] Ex ... X, [Px(x)]
» this means that:

e to obtain small bias we need h~ 0

e to obtain small variance we need h infinite

Example

» example: fit to
N(O,l) using h =
h1/n1/2

» small h: spiky

» need a lot of
points to converge
(variance)

» large h:
approximate
N(O,l) with a sum
of Gaussians of
larger covariance

» will never have
zero error (bias)

ars
a=I10""

n=100"} &

h,r:!

10

Optimal bandwidth

» Wwe would like

 h ~ 0to guarantee zero bias
e Zzero variance as n goes to infinity

» solution:
 make h a function of n that goes to zero
 since variance is O(1/nh9) this is fine if nhd goes to infinity

» hence, we need

n||_>moo h(n) =0 and n||_>moo nh(n) = oo

» optimal sequences exist, e.g.

h(n) = —— or h(n) = —

Vvn logn

11

Optimal bandwidth

» In practice this has limitations

» does not say anything about the finite data case (the one we
care about)

e still have to find the best k

» usually we end up using trial and error or techniques
like cross-validation

12

Cross-validation

» basic idea:

* |eave some data out of your training set (cross validation set)
e train with different parameters

e evaluate performance on cross validation set

* pick best parameter configuration

tralnmg set xval set tralnlng testing

test set

13

| eave-one-out cross-validation

» many variations
» leave-one-out CV:

e compute n estimators of P,(x) by leaving one X; out at a time
« for each P,(x) evaluate P,(X;) on the point that was left out

* pick Py(x) that maximizes this likelihood

14

Non-parametric classifiers

» given kernel density estimates for all classes we can
compute the BDR

» since the estimators are non-parametric the resulting
classifier will also be non-parametric

» this term is general and applies to any learning algorithm
» a very simple example is the nearest neighbor classifier

15

Nearest neighbor classifier
» IS the simplest possible classifier that one could think of:

« it literally consists of assigning to the vector to classify the label of
the closest vector in the training set

* to classify the red point: A

 measure the distance L B &
to all other points SR

« if the closest point A; "B
is a square, assign D_l s
to “square” class i o

« otherwise assign (] B
to “circle” class &

» it works a lot better
than what one might predict

Nearest neighbor classifier

» to define it mathematically we need to define
e atraining set ® = {(Xy,Y1), ---» Xp,YR)}

e XIS a vector of observations, y; is the label

e avector x to classify

» the “decision rule” Is

set y=VY.
where

17

k-nearest neighbors

» instead of the NN, assigns to the majority vote of the k
nearest neighbors

» in this example A

* NN rule says “A”

e but 3-NN rule
SayS HB”
» for x away from the A

border does not make []
much difference

» usually best performance
for k > 1, but there is no universal number

» Kk large: performance degrades (no longer neighbors)
» k should be odd, to prevent ties

Mixture density estimates

» back to BDR-based classifiers

» consider the bridge traffic
analysis problem

4_

» summary:

« want to classify vehicles
Into commercial/private

e measure vehicle weight

. estimate pdf | j
e use BDR

» clearly this is not Gaussian

! 1 I 1 . . |
0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 08 1

» possible solution: use a kernel-based model

19

Kernel-based estimate

» simple learning procedure bandwidth too large: bias

= measure car weights x;

* place a Gaussian on top of each
measurement

» can be overkill

» spending all degrees of freedom (#
of training points) just to get the
Gaussian means bandwidth too small: variance

e cannot use the data to determine
variances

» handpicking of bandwidth can
lead to too much bias or
variance

20

mixture density estimate

» it looks like we could do better by
just picking the right # of
Gaussians

» this is indeed a good model:

» density is multimodal because there
Is a hidden variable Z

o Z determines the type of car

z € {compact, sedan, station wagon, pick up, van}
« for a given car type the weight is approximately Gaussian (or has some

other parametric form)
* the density is a “mixture of Gaussians”

21

mixture model

» two types of random variables
« Z — hidden state variable

e X — observed variable

» observations sampled with a
two-step procedure

» a state (class) is sampled from the
distribution of the hidden variable

P,(z) — z

P(2)

Pxiz(x|0)

* | Pxjz(XIK}

e an observation is drawn from the class conditional density for

the selected state

Pyz(X|z) — X

mixture model

» the sample consists of pairs (x;,z;)

D = {(Xlizl)’ e (Xn’zn)}
but we never get to see the z,

» e.g. bridge example:

* sensor only registers weight
 the car class was certainly there, but it is lost by the sensor
 for this reason Z is called hidden

» the pdf of the observed data is

c=1
C
=). PXz(XIVC)Wc\

c=1

of mixture components

|
@
)
o)
3
S
)
>
@
=
=
@
Q
=

Px(x)

23

mixtures vs kernels

 the mixture model can be rewritten as

C
Px(x) = Zch(X)Wc
c=1

where ¢.(x) > 0,Vx and [¢ge(x)dx = 1.
™ this looks a lot like the kernel density estimate

o) = g > e (M)

p the kernel density estimate is a mixture estimate of
n components

e mixture components are hldgb <X;Xi>

e mMixture weights are uniform 7. = 1/n.

24

mixtures vs parametric models

» any parametric model is a mixture of 1 component

e the weightis 1
e the mixture component is the parametric density itself

» mixtures provide a connection between these two
extreme models

parametric < mixture of C components > kernel-based
C=1 C=n

25

mixture advantages

» With respect to parametric estimates
 more degrees of freedom (parameters) = less bias
» with respect to kernel estimates

 much smaller # of components = less parameters, less variance

small variance, large bias large variance, small bias
o O
parametric < mixture of C components > kernel-based
C=1 C=n

» for the mixture we can learn both means and covariances
(or whatever parameters) from the data

» this usually leads to a better fit!

26

mixture disadvantages

» main disadvantage is learning complexity
» non-parametric estimates

* simple: store the samples (NN); place a kernel on top of each
point (kernel-based)

» parametric estimates

« small amount of work: if ML equations have closed-form

* substantial amount of work: otherwise (numerical solution)
» mixtures:

 there is usually no closed-form solution

« always need to resort to numerical procedures

» standard tool is the expectation-maximization (EM)
algorithm

27

The basics of EM

» as usual, we start from an iid sample D = {x,,...,X.}
» two types of random variables

X observed random variable
e Z hidden random variable

» joint density of X and Z is parameterized by ¥

Py, (X,Z; %)

» goal is to find parameters ¥ that maximize likelihood with
respect to D

w* = arg m\laj]xPX(D; W)

= arg ijfPX\Z(mZ? W) Py(z, W)dz

28

Complete vs incomplete data

» the set

DC = {(X1’21)1 "y (Xnizn)}
Is called the complete data
» the set
D ={Xy, ..., X;}
IS called the incomplete data

» in general, the problem would be trivial if we had access
to the complete data

» to see this let’'s consider a specific example
» Gaussian mixture of C components
o parameters Y= {(7,14,27), - (7cs tics 2¢)}

29

Learning with complete data

» given the complete data D, we only have to split the
training set according to the labels z,

D' ={xlz=1}, D?={xlz=2}, ... ,D*={x|z=C}

» the likelihood of the complete data is

C
H PX,Z(Dca C, \U)

c=1

C
= I Px|z(Dle; W)Pz(c; W)
1

Px 7(D,z; V)

c=
C

— H G(DC, pre, Ze)me
c=1

30

Learning with complete data

» the optimal parameters are

C
W* = arg max 11 6(D°, pie, Ze)me

c=1

» since each term only depends on D¢ and (r,x.,2;) this
can be simplified into

(w5, us,2%) = arg max G(DC, u, X))
C C C
T, L, 2

» and we have a collection of C very familiar maximum
likelihood problems (Hw 2)

* ML estimate of the Gaussian parameters
* ML estimate of the class probabilities

31

Learning with complete data

» the solution Is

ok [{x; € DY}
¢ n
pe = - > Xi
C - 1
1
> o= So(x -) (x —)t
’ [{x; € D°}| ilx,eDe ‘ ¢

» hence, all the hard work seems to be in figuring out what
the z, are

» the EM algorithm does this iteratively

32

Learning with incomplete data (EM)

» the basic idea is quite simple

1. start with an initial parameter estimate ¥°)

2. E-step: given current parameters ¥V and observations in D,
“guess” what the values of the z; are

3. M-step: with the new z;,, we have a complete data problem,
solve this problem for the parameters, i.e. compute #i+1)

4. go to 2.
» this can be summarized as

estimate

parameters

33

