
Mid-term review
ECE 271A

Electrical and Computer Engineering
University of California San Diego

Nuno Vasconcelos Fall 2008

1. Consider a classification problem with two Gaussian classes

PX|Y (x|i) = G(x, µi,Σ), i ∈ {0, 1}

of equal probability
PY (i) = 1/2.

In class, we have considered the BDR solution to this problem. This consists of estimating the para-
meters of the Gaussian classes and then plugging on the BDR to obtain the decision boundary. Here
we will consider an alternative solution, that works directly on the class posteriors.

a) Show that the posterior probability for class 1 is of the form (the posterior for class 0 is 1−PY |x(1|x))

PY |X(1|x) =
1

1 + e−wT t
(1)

where tT = [xT 1]. What is the vector w?

b) Show that an iid sample D = {(x1, y1), . . . , (xn, yn)} has posterior probability

PY|X(Dy|Dx) =
n∏

i=1

PY |X(yi|xi) (2)

with

PY |X(yi|xi) =
(

1
1 + e−wT ti

)yi
(

e−wT ti

1 + e−wT ti

)1−yi

, (3)

where Dy = {y1, . . . , yn} and Dx = {x1, . . . ,xn}.

c) We can now learn the classification boundary, by learning the posterior probabilities with standard
maximum likelihood estimation. For example we can solve for w? such that

w? = arg max
w

PY|X(Dy|Dx).

Show that w? must satisfy the condition∑
i

yiti =
∑

i

1
1 + e−w?T ti

ti

d) Can you guess what the optimal w? is? When n goes to infinity the condition above converges to
(dividing by n on each side)

EY,X[Y T] = EX

[
1

1 + e−w?T T
T
]

with TT = [XT 1]. Show that this condition holds for your guess.
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2. Consider a two dimensional classification problem with two Gaussian classes

PX|Y (x|i) =
1√

(2π)2|Σ|
e−

1
2 (x−µi)

T Σ−1(x−µi), i ∈ {0, 1}

of identical covariance Σ = σ2I. For all problems assume the “0-1” loss function.

a) If the classes have means

µ0 = −µ1 =
[

1
0

]
.

and equal prior probabilities, PY (0) = PY (1), what is the Bayes decision rule for this problem?

b) What are the marginal distributions for the features x1 and x2 for each class? In particular

1. derive expressions for the class-conditional densities PX1|Y (x1|i) and PX2|Y (x2|i) for i ∈ {0, 1},
where x = (x1, x2)T .

2. plot a sketch of the two densities associated with class Y = 0 and a sketch of the two densities
associated with class Y = 1.

3. determine which feature is most discriminant.

c) A linear transformation of the form
z = Γx

was applied to the data, where Γ is a 2× 2 matrix. The decision boundary associated with the BDR is
now the hyperplane of normal w = (1/

√
2,−1/

√
2)T which passes through the origin.

1. determine the matrix Γ

2. What would happen if the the prior probability of class 0 was increased after the transformation?
Here it suffices to give a qualitative answer, i.e. simply say what would happen to the hyperplane.

d) Classification assumes that we know the label for each training point. Sometimes we do not, i.e. we
have the xi but no yi. The classification ideas can, however, be extended to this problem, resulting in
what is usually called a clustering algorithm. The main idea is the following:

• assume two Gaussian classes of identity covariance Σi = I;

• start from a random estimate for the means µi, e.g. pick two points from the training set at
random, and a PY (0) = PY (1) estimate for the class probabilities

• perform K iterations of the following steps:

1. classify the points using the BDR. That is, assign each point xi to class Y = 0 or Y = 1
using the current Gaussian parameter estimates and the BDR;

2. update the Gaussian parameters using the new point assignments. That is use all the points
assigned to class Y = 0 to recompute the mean and probability of class Y = 0, and all
assigned to class Y = 1 to recompute the parameters of this class.
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Denoting the class parameters estimated at iteration k by P k
Y (i) and µk

i , and the points assigned to
class Y = i in this iteration by Dk

i = {xk
i,1, . . . ,x

k
i,n}, answer the following questions.

1. what are the equations for point assignment? That is, given the parameters P k
Y (i), and µk

i , and
a point x, how would you determine the point’s class?

2. what are the parameter update equations? That is, given the set Dk
i = {xk

i,1, . . . ,x
k
i,n} of points

assigned to class Y = i, what are the class parameters for the next iteration, i.e.

P k+1
Y (i) and µk+1

i ?

3. consider the following 4-point training set

{(−1, 0.9)T , (1, 0.8)T , (1.1, 1)T , (−1.2, 1.1)T }

and let the initial parameter estimates be µ0 = (−1.2, 1.1)T and µ1 = (−1, 0.9)T . Run the
algorithm for 3 iterations. For each iteration plot a sketch with the points and the BDR. Comment
on whether the algorithm was successful in separating the classes at the end of each iteration.

Note: you do not necessarily have to do all the precise computations. A “graphical” solution is
sufficient. If you find some ambiguity that would require precise computation to disambiguate,
e.g. you need to find out if a < b and a is very similar to b, feel free to just assume one way or
the other, and write that down. We will not take points for that, as along as it is within reason,
of course.
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