Dot-product kernels

Nuno Vasconcelos

ECE Department, UCSD
Classification

- a classification problem has **two types of variables**
 - \(X \) - vector of **observations** (features) in the world
 - \(Y \) - **state** (class) of the world

Perceptron: classifier implements the **linear decision rule**

\[
h(x) = \text{sgn}[g(x)] \quad \text{with} \quad g(x) = w^T x + b
\]

- appropriate when the **classes are linearly separable**
- to deal with **non-linear separability** we introduce a **kernel**
Kernel summary

1. D not linearly separable in \mathcal{X}, apply feature transformation $\Phi: \mathcal{X} \rightarrow \mathcal{Z}$, such that $\text{dim}(\mathcal{Z}) >> \text{dim}(\mathcal{X})$

2. computing $\Phi(x)$ too expensive:
 - write your learning algorithm in dot-product form
 - instead of $\Phi(x_i)$, we only need $\Phi(x_i)^T \Phi(x_j)$ \forall_{ij}

3. instead of computing $\Phi(x_i)^T \Phi(x_j)$ \forall_{ij}, define the “dot-product kernel”
 \[K(x, z) = \Phi(x)^T \Phi(z) \]
 and compute $K(x_i, x_j)$ \forall_{ij} directly
 - note: the matrix
 \[
 K = \begin{bmatrix}
 \vdots \\
 \cdots K(x_i, x_j) \cdots \\
 \vdots
 \end{bmatrix}
 \]
 is called the “kernel” or Gram matrix

4. forget about $\Phi(x)$ and use $K(x, z)$ from the start!
Polynomial kernels

- this makes a significant difference when $K(x,z)$ is easier to compute that $\Phi(x)^T \Phi(z)$
- e.g., we have seen that

$$K(x,z) = (x^T z)^2 = \Phi(x)^T \Phi(z)$$

with $\Phi : \mathbb{R}^d \to \mathbb{R}^{d^2}$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \to \begin{pmatrix} x_1 x_1, x_1 x_2, \ldots, x_1 x_d, \ldots, x_d x_1, x_d x_2, \ldots, x_d x_d \end{pmatrix}^T$$

- while $K(x,z)$ has complexity $O(d)$, $\Phi(x)^T \Phi(z)$ is $O(d^2)$
- for $K(x,z) = (x^T z)^k$ we go from $O(d)$ to $O(d^k)$
Question

what is a good dot-product kernel?

• intuitively, a good kernel is one that maximizes the margin γ in range space

• however, nobody knows how to do this effectively

in practice:

• pick a kernel from a library of known kernels

• we talked about

 • the linear kernel $K(x,z) = x^T z$
 • the Gaussian family

 $K(x, z) = \frac{1}{\sigma} e^{-\frac{||x-z||^2}{\sigma}}$

 • the polynomial family

 $K(x, z) = \left(1 + x^T z\right)^k, \quad k \in \{1, 2, \cdots\}$
Question

“this problem of mine is really asking for the kernel
\(k'(x,z) = \ldots \)”

- how do I know if this is a dot-product kernel?

let’s start by the definition

Definition: a mapping

\[
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{H}
\]

\[
(x,y) \rightarrow k(x,y)
\]

is a dot-product kernel if and only if

\[
k(x,y) = \langle \Phi(x), \Phi(y) \rangle
\]

where \(\Phi: \mathcal{X} \rightarrow \mathcal{H} \), \(\mathcal{H} \) is a vector space and, \(\langle \ldots, \ldots \rangle \) a dot-product in \(\mathcal{H} \)
Vector spaces

- note that both \mathcal{H} and $\langle ., . \rangle$ can be abstract, not necessarily \mathbb{R}^d

Definition: a vector space is a set \mathcal{H} where

- addition and scalar multiplication are defined and satisfy:

 1) $x+(x'+x'') = (x+x')+x''$
 2) $x+x' = x'+x \in \mathcal{H}$
 3) $0 \in \mathcal{H}, \ 0 + x = x$
 4) $-x \in \mathcal{H}, -x + x = 0$
 5) $\lambda x \in \mathcal{H}$
 6) $1x = x$
 7) $\lambda (\lambda' x) = (\lambda \lambda')x$
 8) $\lambda (x+x') = \lambda x + \lambda x'$
 9) $(\lambda+\lambda')x = \lambda x + \lambda'x$

- the canonical example is \mathbb{R}^d with standard vector addition and scalar multiplication

- another example is the space of mappings $\mathcal{X} \rightarrow \mathbb{R}$ with

 $$(f+g)(x) = f(x) + g(x) \quad (\lambda f)(x) = \lambda f(x)$$
Bilinear forms

- to define dot-product we first need to recall the notion of a bilinear form

Definition: a bilinear form on a vector space \mathcal{H} is a mapping

$$Q: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$$

$$(x, x') \rightarrow Q(x, x')$$

such that $\forall x, x', x'' \in \mathcal{H}$

1. $Q[(\lambda x + \lambda x'), x''] = \lambda Q(x, x'') + \lambda' Q(x', x'')$
2. $Q[x'', (\lambda x + \lambda x')] = \lambda Q(x'', x) + \lambda' Q(x'', x')$

- In \mathbb{R}^d the canonical bilinear form is

$$Q(x, x') = x^T A x'$$

- If $Q(x, x') = Q(x', x) \ \forall x, x' \in \mathcal{H}$, the form is symmetric
Dot products

Definition: a dot-product on a vector space \mathcal{H} is a symmetric bilinear form

$$\langle \cdot , \cdot \rangle : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$$

$$(x, x') \rightarrow \langle x, x' \rangle$$

such that

i) $\langle x, x \rangle \geq 0$, $\forall x \in \mathcal{H}$

ii) $\langle x, x \rangle = 0$ if and only if $x = 0$

Note that for the canonical bilinear form in \mathbb{R}^d

$$\langle x, x \rangle = x^T A x$$

this means that A must be positive definite

$$x^T A x > 0, \ \forall x \neq 0$$
Positive definite matrices

- recall that (e.g. Linear Algebra and Applications, Strang)

Definition: each of the following is a necessary and sufficient condition for a real symmetric matrix A to be (semi) positive definite:

1. $x^T A x \geq 0, \ \forall x \neq 0$
2. all eigenvalues of A satisfy $\lambda_i \geq 0$
3. all upper-left submatrices A_k have non-negative determinant
4. there is a matrix R with independent rows such that $A = R^T R$

Upper left submatrices:

\[
A_1 = a_{1,1}, \quad A_2 = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}, \quad A_3 = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}, \ldots
\]
Positive definite matrices

property iv) is particularly interesting

- in \mathbb{R}^d, $\langle x, x \rangle = x^T Ax$ is a dot-product kernel if and only if A is positive definite
- from iv) this holds if and only if there is R such that $A = R^T R$
- hence

$$\langle x, y \rangle = x^T Ay = (xR)^T (Ry) = \Phi(x)^T \Phi(y)$$

with

$$\Phi: \mathbb{R}^d \to \mathbb{R}^d$$

$$x \to Rx$$

i.e. the dot-product kernel

$$k(x, z) = x^T Az, \quad (A \text{ positive definite})$$

is the standard dot-product in the range space of the mapping $\Phi(x) = Rx$
Note

- There are positive semidefinite matrices
 \[x^T A x \geq 0 \]
 and positive definite matrices
 \[x^T A x > 0 \]
- We will work with semidefinite but, to simplify, will call definite
- If we really need > 0 we will say “strictly positive definite”
Positive definite kernels

how do we define a positive definite function?

Definition: a function $k(x, y)$ is a positive definite kernel on $\mathcal{X} \times \mathcal{X}$ if $\forall l$ and $\forall \{x_1, \ldots, x_l\}, x_i \in \mathcal{X}$, the Gram matrix

$$K = \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots k(x_i, x_j) \cdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \end{bmatrix}$$

is positive definite.

Note: this implies that

- $k(x, x) \geq 0 \quad \forall x \in \mathcal{X}$
- $\begin{bmatrix} k(x, x) & k(x, y) \\ k(y, x) & k(y, y) \end{bmatrix}$ PD $\forall x, y \in \mathcal{X}$

(*)

etc...
Positive definite kernels

this proves some simple properties

• a PD kernel is symmetric

\[k(x, y) = k(y, x), \quad \forall x, y \in X \]

Proof:
since PD means symmetric (*) implies \(k(x,y) = k(y,x) \quad \forall x,y \in X \)

• Cauchy-Schwarz inequality for kernels: if \(k(x,y) \) is a PD kernel, then

\[k(x, y)^2 \leq k(x, x)k(y, y), \quad \forall x, y \in X \]

Proof:
from (*), and property \(\text{iii} \) of PD matrices, the determinant of the 2x2 matrix of (*) is non-negative. This means that

\[k(x,x)k(y,y) - k(x,y)^2 \geq 0 \]
Positive definite kernels

It is not hard to show that all dot product kernels are PD.

Lemma 1: Let $k(x,y)$ be a dot-product kernel. Then $k(x,y)$ is positive definite.

Proof:

- $k(x,y)$ dot product kernel implies that
- $\exists \Phi$ and some dot product $\langle ., . \rangle$ such that $k(x,y) = \langle \Phi(x), \Phi(y) \rangle$
- this implies that if:
 - we pick any l, and any sequence $\{x_1, \ldots, x_l\}$,
 - and let K be the associated Gram matrix
 - then, for $\forall c \neq 0$
Positive definite kernels

\[c^T Kc = \sum_{ij} c_i c_j k(x_i, x_j) \]

\[= \sum_{ij} c_i c_j \langle \Phi(x_i), \Phi(x_j) \rangle \] (k is dot product)

\[= \left\langle \sum_i c_i \Phi(x_i), \sum_j c_j \Phi(x_j) \right\rangle \] (\langle.,.\rangle is a **bilinear form**)

\[= \left\| \sum_i c_i \Phi(x_i) \right\|^2 \geq 0 \] (from **def of dot product**)

\[\blacksquare \]
Positive definite kernels

the converse is also true but more difficult to prove

Lemma 2: Let \(k(x,y), \ x,y \in \mathcal{X}, \) be a positive definite kernel. Then \(k(x,y) \) is a dot product kernel

proof:

- we need to show that there is a transformation \(\Phi, \) a vector space \(\mathcal{H} = \Phi(\mathcal{X}), \) and a dot product \(\langle ., . \rangle_* \) in \(\mathcal{H} \) such that
 \[
 k(x,y) = \langle \Phi(x), \Phi(y) \rangle_*
 \]
- we proceed in three steps
 1. construct a vector space \(\mathcal{H} \)
 2. define the dot-product \(\langle ., . \rangle_* \) on \(\mathcal{H} \)
 3. show that \(k(x,y) = \langle \Phi(x), \Phi(y) \rangle_* \) holds
The vector space \mathcal{H}

- we define \mathcal{H} as the space spanned by linear combinations of $k(\cdot,x_i)$

$$\mathcal{H} = \left\{ f(\cdot) \mid f(\cdot) = \sum_{i=1}^{m} \alpha_i k(\cdot, x_i), \quad \forall m, \forall x_i \in X \right\}$$

- notation: by $k(\cdot,x_i)$ we mean a function of $g(y) = k(y,x_i)$ of y, x_i is fixed.

- homework: check that \mathcal{H} is a vector space

 - e.g. 2) $f(\cdot) = \sum_{i=1}^{m} \alpha_i k(\cdot, x_i)$

$$f(\cdot) + f'(\cdot) = f'(\cdot) + f(\cdot) \in \mathcal{H}$$

$$f'(\cdot) = \sum_{i=1}^{m'} \beta_j k(\cdot, x'_j)$$
Example

- when we use the Gaussian kernel

\[K(., x_i) = e^{-\frac{\|x - x_i\|^2}{\sigma^2}} \]

- \(k(., x_i) \) is a Gaussian centered on \(x_i \) with covariance \(\sigma \)

- and

\[H = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i e^{-\frac{\|x - x_i\|^2}{\sigma^2}}, \forall m, \forall x_i \right\} \]

is the space of all linear combinations of Gaussians

- note that these are not mixtures but close
The operator $<.,.>*$

- if $f(.)$ and $g(.) \in \mathcal{H}$, with

$$f(.) = \sum_{i=1}^{m} \alpha_i k(., x_i) \quad g(.) = \sum_{j=1}^{m'} \beta_j k(., x'_{j})$$ \hspace{1cm} (**)

- we define the operator $<.,.>*$ as

$$\langle f, g \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_{j})$$ \hspace{1cm} (***)
Example

when we use the **Gaussian kernel**

\[K(., x_i) = e^{-\frac{\|x_i\|^2}{\sigma^2}} \]

the operator \(\langle ., . \rangle_* \) is a weighted sum of Gaussian terms

\[\langle f, g \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j e^{-\frac{\|x_i - x'_j\|^2}{\sigma^2}} \]

you can look at this as either:

- a dot product in \(\mathcal{H} \) (still need to prove this)
- a non-linear measure of similarity in \(\mathcal{X} \), somewhat related to likelihoods
The operator $\langle ., . \rangle_*$

重要注记：对于 $f(.)$ 和 $g(.) \in \mathcal{H}$，算子 $\langle ., . \rangle_*$ 有性质

$$
\langle f, g \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)
$$

具有性质

$$
\langle k(., x_i), k(., x'_j) \rangle_* = k(x_i, x'_j)
$$

（****）

证明：只需令

$$
\begin{align*}
\alpha_i &= 1, & \alpha_k &= 0 \quad \forall k \neq i \\
\beta_j &= 1, & \beta_k &= 0 \quad \forall k \neq j
\end{align*}
$$
The operator \(<\cdot,\cdot\>^*_\ast\)

- assume that \(<\cdot,\cdot\>^*_\ast\) is a dot product in \(\mathcal{H}\) (proof in moments)

- since

\[
\langle k(\cdot, x_i), k(\cdot, x_j) \rangle^*_\ast = k(x_i, x_j)
\]

- then, clearly

\[
k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle^*_\ast
\]

with

\[
\Phi: \mathcal{X} \rightarrow \mathcal{H}
\]

\[
x \rightarrow k(\cdot, x)
\]

- i.e. the kernel is a dot-product on \(\mathcal{H}\), which results from the feature transformation \(\Phi\)

- this proves **Lemma 2**
Example

when we use the Gaussian kernel \(K(x, x_i) = e^{-\frac{\|x-x_i\|^2}{\sigma}} \)

- the point \(x_i \in \mathbb{R}^d \) is mapped into the Gaussian \(G(x, x_i, \sigma) \)
- \(\mathcal{H} \) is the space of all functions that are linear combinations of Gaussians
- this has infinite dimension
- the kernel is a dot product in \(\mathcal{H} \), and a non-linear similarity on \(\mathcal{X} \)
In summary

- to show that \(k(x,y) \), \(x, y \in \mathcal{X} \), positive definite \(\Rightarrow k(x,y) \) is a dot product kernel

- we need to show that

\[
\langle f, g \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)
\]

- is a dot product on

\[
\mathcal{H} = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i k(., x_i), \quad \forall m, \forall x_i \in \mathcal{X} \right\}
\]

- this reduces to \text{verifying the dot product conditions}
The operator $<\cdot,\cdot>^*$

1) is $<\cdot,\cdot>^*$ a bilinear form on \mathcal{H}?

by definition of $f(.)$ and $g(.)$ in (**)

$$\langle f, g \rangle^* = \left\langle \sum_{i=1}^{m} \alpha_i k(., x_i), \sum_{j=1}^{m'} \beta_j k(., x'_j) \right\rangle^*$$

on the other hand,

$$\langle f, g \rangle^* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$$

from (***)

$$= \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j \langle k(., x_i), k(., x'_j) \rangle^*$$

from (****)

equality of the two left hand sides is the definition of bilinearity
The operator $\langle ., . \rangle_\ast$

2) is $\langle ., . \rangle_\ast$ symmetric?

note that

$$\langle g, f \rangle_\ast = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_j', x_i) = \langle f, g \rangle_\ast$$

if and only if $k(x_i, x_j') = k(x_j', x_i)$ for all x_i, x_j'.

but this follows from the positive definiteness of $k(x, y)$

we have seen that a PD kernel is always symmetric

hence, $\langle ., . \rangle_\ast$ is symmetric
The operator $\langle ., . \rangle_*$

3) is $\langle f, f \rangle_* \geq 0, \ \forall f \in \mathcal{H}$?

by definition of $f(.)$ in (**)

$$
\langle f, f \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha
$$

where $\alpha \in \mathbb{R}^m$ and K is the Gram matrix

since $k(x, y)$ is positive definite, K is positive definite by definition and $\langle f, f \rangle_* \geq 0$ (x)

the only non-trivial part of the proof is to show that $\langle f, f \rangle_* = 0 \Rightarrow f = 0$

we need two more results
The operator $<.,.>*$

Lemma 3: $<.,.>*$ is itself a positive definite kernel on $\mathcal{H} \times \mathcal{H}$

proof:

- consider any sequence $\{f_1, \ldots, f_m\}, f_i \in \mathcal{H}$
- then

$$\sum_{ij} \gamma_i \gamma_j \langle f_i, f_j \rangle_* = \left \langle \sum_i \gamma_i f_i, \sum_j \gamma_j f_j \right \rangle_* \quad \text{(by bilinearity of $<.,.>*$)}$$

$$= \langle g_1, g_2 \rangle_* \quad \text{(for some } g_1, g_2 \in \mathcal{H})$$

$$\geq 0 \quad \text{(by (x))}$$

- hence the Gram matrix is always PD and the kernel $<.,.>*$ is PD. ■
The operator $<.,.>*$

Lemma 4: $\forall f \in \mathcal{H}, <k(.,x),f(.)>* = f(x)$

Proof:

$$\langle k(., x), f(.) \rangle_* = \left\langle k(., x), \sum_i \alpha_i k(., x_i) \right\rangle_* \quad \text{(by (**))}$$

$$= \sum_i \alpha_i \langle k(., x), k(., x_i) \rangle_* \quad \text{(by bilinearity of $<.,.>*$)}$$

$$= \sum_i \alpha_i k(x, x_i) = f(x) \quad \text{(by (****))}$$
The operator $<\cdot,\cdot>^*$

4) we are now ready to prove that $<f,f>^* = 0 \Rightarrow f = 0$

proof:

- since $<\cdot,\cdot>^*$ is a PD kernel (lemma 3) we can apply Cauchy-Schwarz $k(x,y)^2 \leq k(x,x)k(y,y)$, $\forall x, y \in X$
- using $k(\cdot,x)$ as x and $f(.)$ as y this becomes
 \[
 \langle k(\cdot,x), k(\cdot,x) \rangle^* \langle f, f \rangle^* \geq \left(\langle k(\cdot,x), f \rangle^* \right)^2
 \]
- and using lemma 4
 \[
 k(x,x)\langle f, f \rangle^* \geq f^2(x)
 \]
- from which $<f,f>^* = 0 \Rightarrow f = 0$
In summary

we have shown that

\[\langle f, g \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j) \]

is a dot product on

\[\mathcal{H} = \left\{ f(\cdot) \mid f(\cdot) = \sum_{i=1}^{m} \alpha_i k(\cdot, x_i), \quad \forall m, \forall x_i \in X \right\} \]

and this shows that if \(k(x, y), \ x, y \in X, \) is a positive definite kernel, then \(k(x, y) \) is a dot product kernel.

since we had initially proven the converse, we have the following theorem.
Dot product kernels

Theorem: $k(x, y)$, $x, y \in \mathcal{X}$, is a dot-product kernel if and only if it is a positive definite kernel.

This is interesting because it allows us to check whether a kernel is a dot product or not!

- check if the Gram matrix is positive definite for all possible sequences $\{x_1, \ldots, x_l\}$, $x_i \in \mathcal{X}$

But the proof is much more interesting than this result alone.

It actually gives us insight on what the kernel is doing.

Let’s summarize.
Dot product kernels

- A dot product kernel $k(x,y)$, $x,y \in \mathcal{X}$:
 - Applies a feature transformation
 \[
 \Phi: \mathcal{X} \rightarrow \mathcal{H} \\
 x \rightarrow k(.,x)
 \]
 - To the vector space
 \[
 \mathcal{H} = \left\{ f(.) \mid f(.) = \sum_{i=1}^{m} \alpha_i k(., x_i), \quad \forall m, \forall x_i \in X \right\}
 \]
 - Where the kernel implements the dot product
 \[
 \langle f, g \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)
 \]
Dot product kernels

- the dot product

\[\langle f, g \rangle_* = \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j) \]

- has the reproducing property

\[\langle k(. , x), f(.) \rangle_* = f(x) \]

- you can think of this as analog to the convolution with a Dirac delta

- we will talk about this a lot in the coming lectures

- finally, \(\langle .,. \rangle_* \) is itself a positive definite kernel on \(\mathcal{H} \times \mathcal{H} \)
A good picture to remember when we use the Gaussian kernel $K(x, x_i) = e^{-\frac{(x-x_i)^2}{\sigma}}$

- the point $x_i \in \mathbb{R}^d$ is mapped into the Gaussian $G(x, x_i, \sigma)$
- \mathcal{H} is the space of all functions that are linear combinations of Gaussians
- the kernel is a dot product in \mathcal{H}
- the dot product with one of the Gaussians has the reproducing property
Any Questions?