Kernels

Nuno Vasconcelos

ECE Department, UCSD
Classification

- a classification problem has two types of variables
 - X - vector of observations (features) in the world
 - Y - state (class) of the world

- e.g.
 - $x \in X \subseteq \mathbb{R}^2 = \text{(fever, blood pressure)}$
 - $y \in Y = \{\text{disease, no disease}\}$

- X, Y related by a (unknown) function

 $X \xrightarrow{f(.)} Y = f(X)$

- goal: design a classifier $h: X \rightarrow Y$ such that $h(x) = f(x) \ \forall x$
Perceptron

- classifier implements the linear decision rule

\[h(x) = \text{sgn}[g(x)] \quad \text{with} \quad g(x) = w^T x + b \]

- learning is formulated as an optimization problem
 - define set of errors
 \[E = \{x_i \mid y_i(w^T x_i + b) < 0\} \]
 - define the cost
 \[J_p(w, b) = -\sum_{i\mid x_i \in E} y_i(w^T x_i + b) \]
 - and minimize
 - \(J_p \) cannot be negative since, in \(E \), all \(y_i(w^T x_i + b) \) are negative
 - at zero we know we have the best possible solution (\(E \) empty)
Perceptron learning

is simple stochastic gradient descent on this cost:

\[
\begin{align*}
\text{set } k &= 0, \ w_k = 0, \ b_k = 0 \\
\text{set } R &= \max_i \|x_i\| \\
\text{do } \{ \\
\quad \text{for } i = 1:n \{ \\
\quad \quad \text{if } y_i(w^T x_i + b_k) < 0 \text{ then } \{ \\
\quad \quad \quad - w_{k+1} &= w_k + \eta y_i x_i \\
\quad \quad \quad - b_{k+1} &= b_k + \eta y_i R^2 \\
\quad \quad \quad - k &= k+1 \\
\quad \quad \} \\
\quad \} \\
\} \text{ until } y_i(w^T x_i + b_k) \geq 0, \ \forall i \ (\text{no errors})
\end{align*}
\]
Perceptron learning

- the interesting part is that this is guaranteed to converge in finite time

Theorem: Let \(D = \{(x_1,y_1), \ldots, (x_n,y_n)\} \) and
\[
R = \max_i \| x_i \|
\]
If there is \((w^*,b^*)\) such that \(\|w^*\| = 1\) and
\[
y_i(w^T x_i + b^*) \geq \gamma, \quad \forall i
\]
then the Perceptron will find an error free hyper-plane in at most
\[
\left(\frac{2R}{\gamma}\right)^2
\]
iterations

- the main problem is that it only implements a linear discriminant
Linear discriminant

- when is this a good decision function?
- clearly works if data is linearly separable
 - there is a plane which has
 - all 0’s on one side
 - all 1’s on the other
- we have also shown that it is optimal for
 - Gaussian classes
 - equal class probability and covariance
- but clearly will not work even for
 only slightly more general Gaussian cases
- what are possible solutions to this problem?
Alternatives

1) more complex classifier
 - let’s try to avoid this

2) transform the space:
 - introduce a mapping
 \[\Phi: \mathcal{X} \rightarrow \mathcal{Z} \]
 such that \(\dim(\mathcal{Z}) > \dim(\mathcal{X}) \)

learning a linear boundary in \(\mathcal{Z} \) is equivalent to learning a non-linear boundary in \(\mathcal{X} \)

how do we do this?
 - we already mentioned two possibilities
Solution one

- using Bayes decision rule

 \[h(x) = \arg \max_i P_{X|Y}[x \mid i]P_Y[i] \]

- e.g. for \(P_{X|Y}(x \mid i) = G(x, 0, \sigma_i) \)
 leads to this cannot be implemented with a linear discriminant

- but becomes feasible by mapping to 2D

\[\Phi: \mathcal{R} \rightarrow \mathbb{R}^2 \]

\[x \rightarrow (x, x^2) \]
In general

- because the BDR is
 - pick $h(x) = 1$ if
 \[\frac{P_{X|Y}[x | 1]P_Y[1]}{P_{X|Y}[x | -1]P_Y[-1]} > 1 \]
 - and $h(x) = -1$ otherwise

- the mapping
 \[
 \Phi_{BDR} : \mathbb{R}^d \rightarrow \mathbb{R}^{d+1}, \text{ with } \Phi_{BDR}(x) = \left(x, \frac{P_{X|Y}[x | 1]P_Y[1]}{P_{X|Y}[x | -1]P_Y[-1]} \right)
 \]
 always works, since the hyperplane
 \[
 w^T \Phi_{BDR}(x) + b = 0, \quad \text{with } w = (0, \ldots, 0, 1)^T \text{ and } b = -1
 \]
 optimally separates the classes
Solution two

- add Perceptron layers: MLP as non-linear feature transformation + linear discriminant

\[y = \Phi(x) \]
MLP feature transformation

- learned by the backpropagation algorithm
- gradient descent on \(J(W) = \sum_{i=1}^{n} [t_i - z(x_i; W)]^2 \)
- for any pair \((i,j)\)
 \[
 \frac{\partial J}{\partial w_{ji}} = -\delta_j x_i
 \]
 with
 \[
 \delta_j = \sum_k \delta_k w_{kj}
 \]
 if \(j\) is hidden and
 \[
 \delta_j = -(t_j - z_j) s'(u_j)
 \]
 if \(j\) is output. The weight updates are
 \[
 w_{ji}^{(n+1)} = w_{ji}^{(n+1)} - \eta \frac{\partial J}{w_{ji}}
 \]
Problems

- While theoretically feasible, these solutions have various problems

 - Φ_{BDR}:
 - Requires the knowledge of the densities $P_{X|Y(x|i)}$
 - Density estimation is quite hard, specially when d is large

 - Φ_{MLP}:
 - Takes long time to search
 - How many hidden units, layers, what configuration?
 - Exhaustive search is infeasible

- The problem is that we have been trying to do this “on the cheap”:
 - From \mathbb{R}^d to \mathbb{R}^k where $k > d$ but not by much!
Alternative

- let’s aim big and make $k = \text{dim } [\Phi(X)]$ really large
- intuitively, for larger k:
 - it will be easier to separate the classes linearly, i.e.
 - the set of mappings that achieves linear separation grows
- here is a bold plan:
 - let’s pick $\Phi(x)$ randomly
 - as $k \to \infty$ the probability that this make the data linearly separable increases
- where do we stop?
 - well, we can go all the way to $k = \infty$
 - i.e. we map each point into a function
 \[
 \Phi(x) = (\phi_1(x), \ldots, \phi_k(x)) \xrightarrow{k \to \infty} \phi(x; t)
 \]
Implementation

at first, this looks like a bad idea

set $k = 0$, $w_k = 0$, $b_k = 0$

set $R = \max_i ||x_i||$

do {
 for $i = 1:n$ {
 if $y_i(w^T \Phi(x_i) + b_k) < 0$ then {
 $w_{k+1} = w_k + \eta y_i x_i$
 $b_{k+1} = b_k + \eta y_i R^2$
 $k = k+1$
 }
 }
}

until $y_i(w^T \Phi(x_i) + b_k) \geq 0$, $\forall i$ (no errors)

how do I:

• compute $w^T \Phi(X_i)$
• store $\Phi(X_i)$

as $k \to \infty$?
The dot product implementation

- This turns out to be possible when the learning algorithm can be written in “dot-product” form.

- **Definition:** A learning algorithm is in dot product form if, given a training set
 \[D = \{(x_1,y_1), \ldots, (x_n,y_n)\}, \]
 it only depends on the points \(X_i \) through their dot products \(X_i^T X_j \).

- We will see that, luckily, this is a natural representation for many optimization procedures.

- The Perceptron learning algorithm can be written in this form quite easily (homework).
Perceptron learning

in dot-product form:

\[
\begin{align*}
\text{set } & \alpha_i = 0, b = 0 \\
\text{set } & R = \max_i ||x_i|| \\
\text{do } \{ \\
\text{for } & i = 1:n \{ \\
\text{if } & y_i \left(\sum_{j=1}^{n} \alpha_j y_j x_j^T x_i + b \right) \leq 0 \text{ then } \{ \\
& - \alpha_i = \alpha_i + 1 \\
& - b = b + y_i R^2 \\
\} \\
\} \\
\} \text{ until no errors}
\end{align*}
\]

Notes:

- in original form we update \(w \in \mathbb{R}^d \)
- in dot-product form we update \(\alpha \in \mathbb{R}^n \)
- note that \(n \) is training set size and \(n \gg d \), in general
- at first look does not appear very productive
- the benefits only become visible when we introduce \(\Phi \).
Perceptron learning

in range space:

set $\alpha_i = 0$, $b = 0$

set $R = \max_i ||\Phi(x_i)||$

do {
 for $i = 1:n$
 {
 if $y_i \left(\sum_{j=1}^{n} \alpha_j y_j \Phi(x_j)^T \Phi(x_i) + b \right) \leq 0$ then {
 $\alpha_i = \alpha_i + 1$
 $b = b + y_i R^2$
 }
 }
}

} until no errors

Notes:

• only requires dot-products $\Phi(x_j)^T \Phi(x_i)$

• no-longer need to store the $\Phi(x_j)$

• only the n^2 dot-product matrix

• when $\text{dim} [\Phi(x_j)]$ is infinite this is significant

• what about the computation of the dot products?
The “kernel trick”

“instead of defining defining $\Phi(x)$, computing $\Phi(x_i)$ for each i and $\Phi(x_i)^T \Phi(x_j)$ for each pair (i,j), simply define the function

$$K(x, z) = \Phi(x)^T \Phi(z)$$

and work with it directly.”

$K(x, z)$ is called a dot-product kernel

in fact, since we only use the kernel, why define $\Phi(x)$?

just define the kernel $K(x, z)$ directly!

in this way we never have to deal with the complexity of $\Phi(x)$...

this is usually called the “kernel trick”
Questions

I am confused!

how do I know that if I pick a function $K(x, z)$, it is equivalent to $\Phi(x)^T \Phi(z)$?

• in general, it is not. We will talk about this later.

if it is, how do I know what $\Phi(x)$ is?

• you may never know. E.g. the Gaussian kernel

$$K(x, z) = e^{-\frac{\|x-z\|^2}{\sigma}}$$

is very popular. It is not obvious what $\Phi(x)$ is...

• on the positive side, we did not know how to choose $\Phi(x)$. Choosing instead $K(x, z)$ makes no difference.

why is it that using $K(x, z)$ is easier/better?

• complexity. Let’s look at an example.
Polynomial kernels

Still in \mathbb{R}^d, consider the square of the dot product between two vectors

$$
(x^T z)^2 = \left(\sum_{i=1}^{d} x_i z_i \right)^2 = \left(\sum_{i=1}^{d} x_i z_i \right) \left(\sum_{j=1}^{d} x_j z_j \right) = \\
= \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j z_i z_j \\
= x_1 x_1 z_1 z_1 + x_1 x_2 z_1 z_2 + \ldots + x_1 x_d z_1 z_d + \\
+ x_2 x_1 z_2 z_1 + x_2 x_2 z_2 z_2 + \ldots + x_2 x_d z_2 z_d + \\
\vdots \\
+ x_d x_1 z_d z_1 + x_d x_2 z_d z_2 + \ldots + x_d x_d z_d z_d
$$
Polynomial kernels

can be written as

\[
(x^T z)^2 = \left[x_1 x_1, x_1 x_2, \ldots, x_1 x_d, \ldots, x_d x_1, x_d x_2, \ldots, x_d x_d, \ldots \right]
\]

\[
\Phi(x)^T
\]

hence, we have

\[
K(x, z) = (x^T z)^2 = \Phi(x)^T \Phi(z)
\]

with

\[
\Phi : \mathbb{R}^d \rightarrow \mathbb{R}^{d^2}
\]

\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_d
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x_1 x_1, x_1 x_2, \ldots, x_1 x_d, \ldots, x_d x_1, x_d x_2, \ldots, x_d x_d
\end{pmatrix}^T
\]

\[
\begin{bmatrix}
 z_1 z_1 \\
 z_1 z_2 \\
 \vdots \\
 z_1 z_d \\
 z_d z_1 \\
 z_d z_2 \\
 \vdots \\
 z_d z_d
\end{bmatrix}
\]
Polynomial kernels

- the point is that
 - while $\Phi(x)^T \Phi(z)$ has complexity $O(d^2)$
 - direct computation of $K(x,z) = (x^T z)^2$ has complexity $O(d)$
- direct evaluation is more efficient by a factor of d
- as d goes to infinity this makes the idea feasible
- BTW, you just met another kernel family
 - this implements polynomials of second order
 - in general, the family of polynomial kernels is defined as
 $$K(x,z) = \left(1 + x^T z\right)^k, \quad k \in \{1,2,\ldots\}$$
 - I don’t even want to think about writing down $\Phi(x)$!
Kernel summary

1. D not linearly separable in \mathcal{X}, apply feature transformation $\Phi: \mathcal{X} \rightarrow \mathcal{Z}$, such that $\dim(\mathcal{Z}) >> \dim(\mathcal{X})$

2. computing $\Phi(x)$ too expensive:
 - write your learning algorithm in dot-product form
 - instead of $\Phi(x_i)$, we only need $\Phi(x_i)^T \Phi(x_j) \forall_{ij}$

3. instead of computing $\Phi(x_i)^T \Phi(x_j) \forall_{ij}$, define the “dot-product kernel”

$$K(x,z) = \Phi(x)^T \Phi(z)$$

and compute $K(x_i,x_j) \forall_{ij}$ directly

- note: the matrix

$$K = \begin{bmatrix}
\cdots \\
\cdots K(x_i,z_j) \cdots \\
\cdots
\end{bmatrix}$$

is called the “kernel” or Gram matrix

4. forget about $\Phi(x)$ and use $K(x,z)$ from the start!
Dot-product kernels

- have various nice properties
- Perceptron example:
 - using the “kernelized” Perceptron in domain space \mathcal{X}
 - is equivalent to using original Perceptron in range space $Z = \Phi(\mathcal{X})$
 - we have shown that Perceptron learning will converge in a finite number of iterations
 - the proof did not make any assumptions about the space
 - hence, this holds in range space and shows that
- Perceptron can learn non-linear bounds in finite time!
Kernelized Perceptron learning

Just for completeness, we recall that this is:

\[\text{set } \alpha_i = 0, \ b = 0 \]
\[\text{set } R = \max_i ||\Phi(x_i)|| \]

\[
\text{do } \{
\text{for } i = 1:n \{ \\
\text{if } y_i \left(\sum_{j=1}^{n} \alpha_j y_j \Phi(x_j)^T \Phi(x_i) + b \right) \leq 0 \text{ then } \{
\text{ - } \alpha_i = \alpha_i + 1 \\
\text{ - } b = b + y_i R^2
\} \\
\} \\
\} \text{ until no errors}
\]
Kernelized Perceptron learning

Theorem: Let \(D = \{(x_1,y_1), \ldots, (x_n,y_n)\} \), \(\Phi(x) \) a feature transformation and

\[
R = \max_i \|\Phi(x_i)\|
\]

If there is \((w^*,b^*) \) such that \(\|w^*\| = 1 \) and

\[
y_i(w^{*\top}\Phi(x_i) + b^*) > \gamma, \quad \forall i
\]

then the kernelized Perceptron will find an error free hyper-plane in at most

\[
\left(\frac{2R}{\gamma}\right)^2 \text{ iterations}
\]

Note that the margin \(\gamma \) is now in range space \(\mathcal{Z} \)

This implies that the choice of kernel must matter!
Question

What is a good dot-product kernel?

- The above result suggests that a good kernel is one that maximizes the margin γ in range space.
- However, nobody knows how to do this in practice:
 - Pick a kernel from a library of known kernels.
 - We have already met:
 - The linear kernel $K(x, z) = x^T z$.
 - The Gaussian family
 $$K(x, z) = \exp \left(-\frac{\|x - z\|^2}{\sigma^2} \right)$$
 - The polynomial family
 $$K(x, z) = \left(1 + x^T z\right)^k, \quad k \in \{1, 2, \ldots\}$$
Dot-product kernels

• this may not be a bad idea
 • we rip the benefits of moving to a high-dimensional space
 • without paying a price in complexity
 • the kernel simply adds a few parameters \((\sigma, k)\)
 • learning it would imply introducing many parameters (up to \(n^2\))

• recall that
 • the learning algorithm is still maximizing \(\gamma\) in \(\mathcal{Z}\)
 • it is just that the maximum may not be as large as if the kernel were chosen optimally
 • but the difference may not justify the risk of overfitting
 • anyway, this is an open research question
Question

does the kernel have to be a dot-product kernel?

not necessarily. For example, neural networks can be seen as implementing kernels that are not of this type

however:

• you loose the parallelism. what you know about the learning machine may no longer hold after you kernelize

• most of what we are going to do in the next lectures no longer holds

• dot-product kernels usually lead to convex learning problems. Usually you loose this guarantee for non dot-product

i.e. you have to be careful
Question

how do I know if a function is a dot-product kernel?

we will start looking at this next class

homework:

• we are going to enter in a slightly more technical stage of the course
• e.g. we will use abstract dot-products $<x,y>$ instead of $\sum_i x_i z_i$
• you may want to revise some core concepts
• for next class, try to revise the definitions of
 • vector space, dot product, bilinear form, norm
Any Questions?