Kernel-based density estimation

Nuno Vasconcelos

ECE Department, UCSD
Announcement

last class, December 2, we will have “Cheetah Day”

what:

• 5 teams, average of 3 people
• each team will write a report on the 5 cheetah problems
• each team will give a presentation on one of the problems

why:

• to make sure that we get the “big picture” out of all this work
• presenting is always good practice
• because I am such a good person...
Announcement

- how much:
 - 20% of the final exam grade (10% report, 10% presentation)

- what to talk about:
 - report: comparative analysis of all solutions of the problem
 - as if you were writing a conference paper
 - presentation: will be on one single problem
 - review what solution was
 - what did this problem taught us about learning?
 - what “tricks” did we learn solving it?
 - how well did this solution do compared to others?
Announcement

details:

- get together and form groups
- let me know what they are by December 16 (email is fine)
- I will randomly assign the problem on which each group has to be expert
- prepare a talk for 15min (7 or 8 slides)
- feel free to use my solutions, your results, create new results, whatever...
Plan for today

- we have talked a lot about the **BDR and methods based on density estimation**
- **practical densities are not well approximated by simple probability models**
- last lecture: alternative way is to go non-parametric
 - NN classifier
 - just don’t estimate densities at all!
 - good asymptotic performance: \(P^* < P_{X,Y}[g(x) \sim y] < 2P^* \)
- today: the truth is that we know how to get to \(P^* \)
 - use the BDR
 - use **better probability density models**!
Non-parametric density estimates

Given iid training set $D = \{x_1, \ldots x_n\}$, the goal is to estimate

$$P_X(x)$$

Consider a region \mathcal{R}, and define

$$P = P_X[x \in \mathcal{R}] = \int_{\mathcal{R}} P_X(x) dx.$$

and define

$$K = \#\{x_i \in D | x_i \in \mathcal{R}\}.$$

This is a binomial distribution of parameter P

$$P_K(k) = \mathcal{B}(n, P)$$

$$= \binom{n}{k} P^k (1 - P)^{n-k}$$
Binomial random variable

- ML estimate of P
 $$\hat{P} = \frac{k}{n}.$$
 and statistics
 $$E[\hat{P}] = \frac{1}{n}E[k] = \frac{1}{n}nP = P$$
 $$\text{var}[\hat{P}] = \frac{1}{n^2} \text{var}[k] = \frac{P(1 - P)}{n}.$$
 Note that $\text{var}[\hat{P}] \leq 1/4n$ goes to zero very quickly, i.e.
 $$\hat{P} \rightarrow P.$$

<table>
<thead>
<tr>
<th>N</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var[P] <</td>
<td>0.025</td>
<td>0.0025</td>
<td>0.00025</td>
<td>...</td>
</tr>
</tbody>
</table>
Histogram

► this means that k/n is a very good estimate of P

► on the other hand, from the mean value theorem, if $P_X(x)$ is continuous $\exists \epsilon \in \mathcal{R}$ such that

$$P = \int_{\mathcal{R}} P_X(x) \, dx = P_X(\epsilon) \int_{\mathcal{R}} \, dx = P_X(\epsilon) V(\mathcal{R}).$$

► this is easiest to see in 1D

• can always find a box such that the integral of the function is equal to that of the box

• since $P_X(x)$ is continuous there must be a ϵ such that $P_X(\epsilon)$ is the box height
Histogram

- hence

\[P_X(\epsilon) = \frac{P}{V(\mathcal{R})} \approx \frac{\hat{P}}{V(\mathcal{R})} = \frac{k}{nV(\mathcal{R})} \]

- using continuity of \(P_X(x) \) again and assuming \(R \) is small

\[P_X(x) \approx \frac{k}{nV(\mathcal{R})}, \quad \forall x \in V(\mathcal{R}) \]

- this is the histogram

- it is the simplest possible non-parametric estimator

- can be generalized into kernel-based density estimator
Kernel density estimates

- assume \mathcal{R} is the d-dimensional cube of side h

$$V = h^d$$

and define *indicator* function of the unit hypercube

$$\phi(u) = \begin{cases}
 1, & \text{if } |u_i| < 1/2 \\
 0, & \text{otherwise.}
\end{cases}$$

hence

$$\phi \left(\frac{x - x_i}{h} \right) = 1$$

iif $x_i \in$ hypercube of volume V centered at x.

- the number of sample points in the hypercube is

$$k_n = \sum_{i=1}^{n} \phi \left(\frac{x - x_i}{h} \right)$$
Kernel density estimates

this means that the histogram can be written as

\[P_X(x) = \frac{1}{nh^d} \sum_{i=1}^{n} \phi \left(\frac{x - x_i}{h} \right) \]

which is equivalent to:

• “put a box around \(X \) for each \(X_i \) that lands on the hypercube”
• can be seen as a very crude form of interpolation
• better interpolation if contribution of \(X_i \) decreases with distance to \(X \)

consider other windows \(\phi(x) \)
Windows

what sort of functions are valid windows?

note that $P_X(x)$ is a pdf if and only if

$$P_X(x) \geq 0, \forall x \text{ and } \int P_X(x) dx = 1$$

since

$$\int P_X(x) dx = \frac{1}{nh^d} \sum_{i=1}^{n} \int \phi \left(\frac{x - x_i}{h} \right) dx$$

$$= \frac{1}{nh^d} \sum_{i=1}^{n} \int \phi (y) h^d dy$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int \phi (y) dy$$

these conditions hold if $\phi(x)$ is itself a pdf

$$\phi(x) \geq 0, \forall x \text{ and } \int \phi(x) dx = 1$$
Gaussian kernel

- probably the most popular in practice

\[\phi(x) = \frac{1}{\sqrt{2\pi^d}} e^{-\frac{1}{2}x^T x} \]

- note that \(P_X(x) \) can also be seen as a sum of pdfs centered on the \(X_i \) when \(\phi(x) \) is symmetric in \(X \) and \(X_i \)

\[P_X(x) = \frac{1}{nh^d} \sum_{i=1}^{n} \phi \left(\frac{x - x_i}{h} \right) \]
Gaussian kernel

Gaussian case can be interpreted as

• sum of n Gaussians centered at the X_i with covariance hI

• more generally, we can have a full covariance

$$P_X(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^d|\Sigma|}} e^{-\frac{1}{2}(x-x_i)^T\Sigma^{-1}(x-x_i)}$$

sum of n Gaussians centered at the X_i with covariance Σ

Gaussian kernel density estimate: "approximate the pdf of X with a sum of Gaussian bumps"
Kernel bandwidth

- back to the generic model

\[P_X(x) = \frac{1}{nh^d} \sum_{i=1}^{n} \phi \left(\frac{x - x_i}{h} \right) \]

- what is the role of \(h \) (bandwidth parameter)?

- defining

\[\delta(x) = \frac{1}{h^d} \phi \left(\frac{x}{h} \right) \]

- we can write

\[P_X(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i) \]

- i.e. a sum of translated replicas of \(\delta(x) \)
Kernel bandwidth

- h has two roles:
 1. rescale the x-axis
 2. rescale the amplitude of $\delta(x)$

- this implies that for large h:
 1. $\delta(x)$ has low amplitude
 2. iso-contours of h are quite distant from zero
 $(x$ large before $\phi(x/h)$ changes significantly from $\phi(0))$

\[\delta(x) = \frac{1}{h^d} \phi \left(\frac{x}{h} \right) \]
Kernel bandwidth

- for small h:
 1. $\delta(x)$ has large amplitude
 2. iso-contours of h are quite close to zero
 (x small before $\phi(x/h)$ changes significantly from $\phi(0)$)

$$\delta(x) = \frac{1}{h^d} \phi\left(\frac{x}{h}\right)$$

- what is the impact of this on the quality of the density estimates?
Kernel bandwidth

- it controls the smoothness of the estimate
 - as h goes to zero we have a sum of delta functions (very “spiky” approximation)
 - as h goes to infinity we have a sum of constant functions (approximation by a constant)
 - in between we get approximations that are gradually more smooth
Kernel bandwidth

- why does this matter?
- when the density estimates are plugged into the BDR
- smoothness of estimates determines the smoothness of the boundaries

- this affects the probability of error!
Convergence

- since $P_x(x)$ depends on the sample points X_i, it is a random variable
- as we add more points, the estimate should get “better”
- the question is then whether the estimate ever converges
- this is no different than parameter estimation
- as before, we talk about convergence in probability
- $\hat{P}_X(x)$ converges to $P_X(x)$ if

$$\lim_{n \to \infty} E_{X_1, \ldots, X_n}[\hat{P}_X(x)] = \hat{P}_X(x)$$

$$\lim_{n \to \infty} var_{X_1, \ldots, X_n}[\hat{P}_X(x)] = 0$$
Convergence of the mean

since the X_i are iid

\[
E_{X_1, \ldots, X_n} [\hat{P}_X(x)] = \\
= \frac{1}{nh^d} \sum_{i=1}^{n} E_{X_i} \left[\phi \left(\frac{x - x_i}{h} \right) \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \int \frac{1}{h^d} \phi \left(\frac{x - v}{h} \right) P_X(v) dv \\
= \int \frac{1}{h^d} \phi \left(\frac{x - v}{h} \right) P_X(v) dv \\
= \int \delta(x - v) P_X(v) dv
\]
Convergence of the mean

- hence

\[E_{X_1,\ldots,X_n}[\hat{P}_X(x)] = \int \delta(x - v) P_X(v) dv \]

- this is the convolution of \(P_X(x) \) with \(\delta(x) \)

- it is a blurred version ("low-pass filtered") unless \(h = 0 \)

- in this case \(\delta(x-v) \) converges to the Dirac delta and so

\[\lim_{h \to 0} E_{X_1,\ldots,X_n}[\hat{P}_X(x)] = P_X(x) \]
Convergence of the variance

since the X_i are iid

\[
\text{var}_{X_1, \ldots, X_n} [\hat{P}_X(x)] = \\
= \sum_{i=1}^{n} \text{var}_{X_i} \left[\frac{1}{nh^d} \phi \left(\frac{x - x_i}{h} \right) \right] \\
\leq n E_X \left[\frac{1}{n^2 h^{2d}} \phi^2 \left(\frac{x - x_i}{h} \right) \right] \\
= \frac{1}{nh^d} \int \frac{1}{h^d} \phi^2 \left(\frac{x - v}{h} \right) P_X(v) dv \\
\leq \frac{1}{nh^d} \sup \left[\phi \left(\frac{x}{h} \right) \right] \int \frac{1}{h^d} \phi \left(\frac{x - v}{h} \right) P_X(v) dv \\
= \frac{1}{nh^d} \sup \left[\phi \left(\frac{x}{h} \right) \right] E_{X_1, \ldots, X_n} [\hat{P}_X(x)]
\]
Convergence

in summary

\[E_{X_1, \ldots, X_n}[\hat{P}_X(x)] = \delta(x) \otimes P_X(x) \]

\[\text{var}_{X_1, \ldots, X_n}[\hat{P}_X(x)] = \leq \frac{1}{nh^d} \sup \left[\phi \left(\frac{x}{h} \right) \right] E_{X_1, \ldots, X_n}[\hat{P}_X(x)] \]

this means that:

• to obtain small bias we need \(h \sim 0 \)
• to obtain small variance we need \(h \) infinite
Convergence

intuitively makes sense

- $h \sim 0$ means a Dirac around each point
- can approximate any function arbitrarily well
- there is no bias
- but if we get a different sample, the estimate is likely to be very different
- there is large variance
- as before, variance can be decreased by getting a larger sample
- but, for fixed n, smaller h always means greater variability

example: fit to $N(0,1)$ using $h = h/n^{1/2}$
Example

- small h: spiky
- need a lot of points to converge (variance)

- large h: approximate $N(0, I)$ with a sum of Gaussians of larger covariance
- will never have zero error (bias)
Optimal bandwidth

- we would like
 - $h \sim 0$ to guarantee zero bias
 - zero variance as n goes to infinity

- solution:
 - make h a function of n that goes to zero
 - since variance is $O(1/nh^d)$ this is fine if nh^d goes to infinity

- hence, we need
 \[\lim_{n \to \infty} h(n) = 0 \quad \text{and} \quad \lim_{n \to \infty} nh(n) = \infty \]

- optimal sequences exist, e.g.
 \[h(n) = \frac{k}{\sqrt{n}} \quad \text{or} \quad h(n) = \frac{k}{\log n} \]
Optimal bandwidth

- in practice this has limitations
 - does not say anything about the finite data case (the one we care about)
 - still have to find the best k
- usually we end up using trial and error or techniques like cross-validation
Cross-validation

▸ basic idea:
 • leave some data out of your training set (cross validation set)
 • train with different parameters
 • evaluate performance on cross validation set
 • pick best parameter configuration

▸ many variations

▸ leave-one-out CV:
 • compute n estimators of $P_X(x)$ by leaving one X_i out at a time
 • for each $P_X(x)$ evaluate $P_X(X_i)$ on the point that was left out
 • pick $P_X(x)$ that maximizes this likelihood
Any Questions?