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Abstract

Document decomposition is a basic but crucial step for
many document related applications. This paper proposes a
novel approach to decompose document images into zones.
It first generates overlapping zone hypotheses based on
generic visual features. Then, each candidate zone is eval-
uated quantitatively by a learned generative zone model.
We formulate the zone inference problem into a constrained
optimization problem, so as to select an optimal set of non-
overlapping zones that cover a given document image. The
experimental results demonstrate that the proposed method
is very robust to document structure variation and noise.

1 Introduction

Document decomposition is a basic but crucial step for
many document related tasks, such as document classi-
fication, recognition, and retrieval. The goal is to seg-
ment document images into zones. Each zone is a per-
ceptually compact and consistent unit (at certain scale),
e.g. a paragraph of text, a textural image patch. Methods
for document image decomposition can be classified into
three categories: bottom-up methods[4, 8, 12], top-down
methods[11, 1, 6, 7], and combination of the two[10]. Typ-
ical examples of bottom-up methods utilize detected con-
nected components, and progressively aggregate them into
higher level structures, e.g. words, text lines, and para-
graphs (zones). Conversely, top-down methods decom-
pose larger components into smaller ones. Usually, both
types of methods heavily depend on detecting connected
components, separating graphics and white space, or cer-
tain document generating rules and heuristics. However,
both parameters for detecting document components and
rules/heuristics used to segment documents are often manu-
ally tuned and defined by observing data from a develop-
ment set. Thus, the adaptability and robustness of these
methods are limited. It is hard for them to be generalized

from document to document. When there exist ambiguities
(e.g. text in document is noisy or has accidental proximity),
neither type of method decomposes pages reliably. Meth-
ods based on statistical pattern analysis techniques [5, 9]
are generally more robust. However, current reported meth-
ods, so far, are still relatively naive. For example, features
are ad hoc, and computation engines are greedy.

This paper proposes a novel approach to decompose doc-
ument images using machine learning and pattern recogni-
tion techniques. Given a document image, it first proposes
over-complete overlapping zone hypotheses in a bottom-up
way based on generic visual feature classifiers. Then, each
candidate zone is evaluated and assigned a cost according
to a learned generative probabilistic zone model. Finally, a
zone inference is formulated into a constrained optimization
problem, so that the selected optimal set of non-overlapping
zones that covers a given document image corresponds to
the global optimal page decomposition solution.

The most outstanding advantage of this method is that
it organically combines a convenient document represen-
tation, an elaborated computational data structure, and an
efficient inference algorithm together to solve the page de-
composition problem. In other words, it seamlessly incor-
porates data(documents), models(representation) and com-
puting (computational data structure and algorithm) into an
integrated framework. Thus, it makes the model effective
for data representation and computation; and it also makes
the computation efficient due to the convenient model and
computational data structure.

We first introduce a document image representation in
Section 2. We discuss document models and model learning
in Section 3. In Section 4, we formulate zone inference into
a constrained integer linear optimization problem. Some
results are shown in Section 5. Finally, we summarize the
proposed method in Section 6.



2 Document Image Representation
We represent a document image by a 2-layer model. The

first layer is primitive layer. Given a document image I , we
apply standard techniques, such as [13], to detect “words”
as atomic primitives, and connect these words into a word-
graph, denoted as Gw.

Gw =< V, E >,

where V = {vi; i = 1, . . . , Nw}, each “word” is a graph
node v. Nw is the number of “words” in a document. The
edge set, E = {(e = (i, j), wij) : vi, vj ∈ V, wij ∈ R},
tells the neighborhood relation of pairs of “words.” Each
edge is associated with a weight, wij , representing bound-
ing force between a pair of “words.”

Note that these detected “words” need not to be legiti-
mated words, a fraction of word or an image patch is fine.
The only purpose of this step is to reduce the image repre-
sentation from pixels to a compact atomic “word” represen-
tation for the sake of computational efficiency.

The second layer is layout layer, where the detected
“words” are grouped into zones and form a zone-map, de-
noted as Z.

Z = (Nz, {zj : j = 1, . . . , Nz}), (1)

where Nz is the number of zones. Each zone is defined as

zj = ({c(j)i : i = 1, . . . , ncj}, {v(j)
k : k = 1, . . . , nwj}), (2)

which is a polygon representation; c
(j)
i is a corner of a zone

bounding polygon. ncj is the number of vertices/corners of
zone-j’s bounding polygon. nwj is the number of “words”
comprising zone-j.

Most conventional zoning algorithms heavily depend on
connected component and white-space analysis, which in-
volve ad hoc parameter tuning and rigid rule based reason-
ing. Consequently, the adaptability and robustness of the
algorithms are limited. However, our zone representation is
based on corners, which is a well-known generic low-level
robust visual feature, and it is independent of language. As
corner detection is invariant to rotation, our method toler-
ates page skew. (Corners of the textural image bounding
polygon is still obtained by connected component analysis.)
Note that the zone’s polygon representation is not necessar-
ily a rectangle. Compared with other work, our method is
more robust and more generalizable to different document
images, where there exist large variations across different
document genres(Fig.3).

From generative model point of view, we have the fol-
lowing causal dependence Z → Gw. We integrate the two
layers into a joint probability of Gw (derived from an input
document image I) and the hidden representation Z:

p(Gw, Z) = p(Gw|Z)p(Z), (3)

where p(Gw|Z) is a generic zone likelihood model, and
p(Z) is a prior model for zone relations.

3 Models and Learning
We first discuss features and data preparation for models

and learning.

3.1 Features
Generic visual features In this project, we adopt 21

Harr-like filters to extract features from document images.
These 21 filters are derived from 5 prototype Harr-filters
(including a horizontal step edge, a vertical step edge, a
horizontal bar(ridge), a vertical bar, and a diagonal blocks)
by varying their size and scale. These features are generic
and important visual features, and the filter responses can be
computed in constant time at any scale and location using
integral images.

“Word” related features “Word” related features are
very important and convenient features for document anal-
ysis. In this project, we identified six types of generic
and low-level such features on word-graph g, denoted as
f

(0)
w (g), · · · , f (5)

w (g). For example, there are features mea-
suring compactness of a zone, “word” height consistency in
a zone, and average edge-weight cut by zone bounding box
borders. Due to space limit, please refer to our technical
report at PARC for details.

3.2 Data preparation
3.2.1 Generating word-graph – the primitive layer
Given a document image we first compute a word-graph Gw

using a neighbor finding algorithm based on Voronoi tes-
sellation algorithm[8](Fig.1.(a)). Then, we compute edge
weights, which tell how likely a pair of connected words
belongs to the same zone. The edge weights are posterior
probabilities returned by an edge classifier discussed below.

Learning word-graph edge classifier We adopt Sup-
port Vector Machines (SVM) to learn a binary classifier
to assign weights to word-graph edges. Given a number
of Voronoi word-graphs derived from training images, we
learn the SVM edge classifier as follows:

1. Data Preparation: We manually label zone bounding
boxes on the training word-graphs. Positive edge sam-
ples are the edges within zone bounding boxes; nega-
tive samples are those cut by bounding box borders.

2. Feature Extraction: We extract a 22-dimensional fea-
ture vector including a feature accounting height dif-
ference of a pair of “words”, and 21 Harr-like filter
responses (described above) from an image patch. The
image patch is cut from I centering at the mid-point of
an edge, and its size is twice large of the union of the
two “words” bounding boxes.



(a) (b)

Figure 1. (a) A Voronoi word-graph. (b) The
same word-graph after prune edges whose
weighs are less than 0.5 assigned by an edge
classifier.

3. SVM Training: We train a LibSVM[2] classifier on the
extracted feature vectors.

Fig.1.(b) shows a word-graph after pruning edges whose
weighs are less than 0.5 assigned by the SVM edge clas-
sifier. Note that as the connection of a pair of “words” is
computed based on generic features, the measure is more
robust than pre-defined adhoc heuristic rules.

3.2.2 Generating zone hypotheses
In Eqn.2, the zone representation is a generic polygon. In
this paper, we demonstrate the power of the representation
by simply using rectangles for zones without losing much
generality due to the data set. Thus, Eqn.2 is reduced to
zj = (cul, clr, {v(j)

k : k = 1, . . . , nwj}), where cul and clr

are upper-left and lower-right corners of a zone bounding
box.

In order to propose candidate zones efficiently, we train
two classifiers, which detect upper-left and lower-right cor-
ners in document images, as follows:

1. Data Preparation: We obtain positive samples of
zones’ upper-left and lower-right corners using the la-
beled zones’ corners in training word-graphs; Negative
samples are collected by randomly selecting “word”
bounding boxes’ corners, which are not the corners of
labeled zones.

2. Feature Extraction: We extract a 21-dimension generic
visual feature vector (described above) from an image
patch, which is cut from I centering at an upper-left or
lower-right corner, and its size is 400× 400 pixels.

3. SVM Training: We train LibSVM corner classifiers on
the extracted feature vectors.

We augment the corner set by including bounding box cor-
ners of word-graph connected components in order not to

(a) (b)

Figure 2. (a) Detected corners. (b) Proposed
top candidate zones.

miss any possible corners. Fig.2.(a) shows detected zone
corners. We propose all possible candidate zones by pair-
ing all the detected upper-left with all lower-right corners.
Fig.2.(b) shows top 51 candidate zones with least costs pro-
posed by this method. For the sake of computation effi-
ciency, the rest of zones with higher costs are discarded.
The zone costs are assigned by a learned generative zone
model introduced below.

3.3 A likelihood model for zones

This section discusses a generic zone model, which is
used to assign costs to candidate zones.

In Eqn.3, p(Gw|Z) can be factorized into

p(Gw|Z) = p(gw̄)
Nz∏

i=1

p(gi|zi),

where gw̄ is sub-graphs of “words” not covered by any
zone. p(gw̄) = exp(−|gw̄|), and | · | denotes the cardinality
function. gi is sub-word-graph(s) subsumed in zone-i, and
p(gi|zi) is a generative model for zones.

Intuitively, p(g|z) governs how “words” are organized
in zones in term of the features f

(j)
w (·) described in

Section.3.1. We want to construct a probabilistic model p
on word-sub-graphs, such that the expected value of each
feature is the same as its average on the observed feature
extracted from training data. That is, given n labeled zones,

Ej [f (j)
w (g|z)] =

n∑

i=1

p(gi|zi)f (j)
w (gi|zi)

=
1
n

n∑

i=1

f (j)
w (gi|zi) = µj , j = 0, . . . , 5.

The observed feature statistics serve as constraints. Thus,
based on maximum entropy principle, the likelihood model



for zones is derived as

p(g|z) = c exp{−
5∑

j=0

λjf
(j)
w (g|z)}, (4)

where λ’s are Lagrange multipliers or, in this case, feature
weights to be estimated. c is the normalizing constant. Note
that as the features f

(2)
w , f

(3)
w , f

(4)
w are “context sensitive,”

the zone model encode certain amount of context informa-
tion.

In Eqn.4, generally, there is no closed form Maximum
Likelihood Estimation (MLE) solution for (λ0, . . . , λ5). We
adopt a numerical method called Generalized Iterative Scal-
ing (GIS) proposed by [3] to solve them iteratively.

3.4 A prior model for zone-map
The prior model of zone-maps governs not only each

zone’s shape, but also spatial distribution of zones in a page,
e.g. similarity, proximity, symmetry. It is characterized
by a statistical ensemble called Gestalt ensemble for vari-
ous Gestalt patterns[14]. The model makes zone evaluation
context sensitive. However, learning such a prior model is
very expensive. In this project, we take advantage of the
specificity of the document set by simply enforcing that
each zone is a rectangle and there is no overlap between any
two zones, such that p({z1, . . . , zNz}) =

∏
i 6=j δ(zi ∩ zj),

where δ(·) is the Dirac delta function. Thus,

p(Z) = p(Nz)Πi 6=jδ(zi ∩ zj), (5)

where p(Nz) is a prior knowledge on zone cardinality,
which we assume a uniform distribution.

In summary, the joint probability of a word-graph Gw

and zone partition Z is

p(Gw, Z) = p(Gw|Z)p(Z)
= p(gw̄){ΠNz

i=1p(gi|zi)}p(Nz)Πi 6=jδ(zi ∩ zj) (6)

4 Zone Inference
Document image decomposition can be formulated into

a Maximum A Posteriori (MAP) zone inference problem
(p(Z|Gw)). However, to find the global optimal solution
in this high dimensional space can be very expensive. In
this paper, we propose a novel approach, which converts
this challenging statistical inference problem into an opti-
mal set selection problem by turning learned data statistics
into costs and constraints. By solving it, we find the global
optimal page decomposition solution.

4.1 Generating costs and constraints from
learned statistics

Instead of assigning costs and defining constraints in an
ad hoc way, we derive them based on learned probabilistic

models as follows: 1) We convert a probability 0 < P (·) <
1 to a cost as

c(·) = ρ(− log P (·)), (7)

where ρ(x) is a robust function. 2) When P (·) = 0 or
P (·) = 1, there generates a binary constraint for that event.
As the result, in this project, we have the following costs
and constraints generated from the learned models: 1) indi-
vidual cost for each zone, 2) a binary constraint that selected
zones cover all “words” in a page, and 3) a binary constraint
of no overlap between any pair of zones.

4.2 Integer linear programming
After candidate zones are proposed, page decomposition

becomes an optimal set selection problem, which can be
formulated as binary integer programming(ILP) problem.
Suppose that there are n candidate zones, we introduce a
binary variable vector x = (x1, . . . , xn), where xi = 1
means zone-i is selected; 0, otherwise. Any specific choice
of 0’s or 1’s for the components of x corresponds to select-
ing a particular subset of the candidate zones. Then, we
define our cost functions and constraints as:

• total zone cost:

Cz(x) = cT
z x, (8)

where cz = (cz1, . . . , czn)T is the vector of individual
zone costs, which is computed only once by Eqn.4 &
Eqn.7 immediately after candidate zones are proposed.

• word covering constraint: Given a Nw-word page,

nT
wz x = Nw, nwz = (nw1, . . . , nwn)T , (9)

where nwi is the number of words subsumed in candi-
date zone-i.

• non-overlap constraint: To encode zones’ non-
overlapping constraint, we create a convenient data
structure, a matrix Ao, which is easily generated as
follows: for each pair of overlapping zones, say zone-
i and zone-j, we enforce a constraint: xi + xj ≤ 1,
which means there at most one of them can be chosen.
We add a 1×n row vector to Ao, each entry of which is
0, except for 1’s at the ith and jth locations. With this
data structure, the constraints are written compactly as

Ao x ≤ 1. (10)

where 1 is a vector of all 1’s of appropriate size.

Now our goal of page decomposition can be written as

minimize cT
z x

such that Ao x ≤ 1
nT

wz x = Nw

xi ∈ {0, 1}
(11)

This is an integer linear programming formulation can be
passed to any standard ILP solver, such as CPLEX.



Figure 3. Page decomposition results. The
result of 2nd document at top row shows that
the method is robust to noise.

5 Data Set and Experimental Results
We train and test our model on the first page of articles

from NLM’s MEDLINE database. We randomly select a set
of first pages for training and a different set of first pages for
testing. Some inference results are shown in Fig.3. We can
see that our results are very accurate and robust to document
layout variations and noise. Moreover, we claim that the
proposed method is capable to efficiently handle problems
with about 200 binary variables. The solution space has po-
tentially 2200 possibilities, so could potentially take a pro-
hibitively long time to solve. However, with our method, we
have found most of page decomposition speeds are within a
second. This suggests that there is some hidden structure to
this problem, that is enabling the efficient solution of poten-
tially combinatorially complex problems. This is a future
research topic.

6 Conclusions
We have proposed a novel, generic and efficient learn-

ing and inference framework to solve a fundamental chal-
lenging problem of document analysis. It organically in-
tegrates generative probabilistic models and integer linear
programming (ILP) to search for global optimal solutions.
The learning part learns robust probabilistic models based

on generic features. The inference module casts an ex-
pensive statistical inference to an ILP optimization prob-
lem, which is efficiently solved. The joint statistics of data
is converted to constraints in the ILP formulation, which
makes the inference context sensitive. The proposed com-
putational data structure is convenient to represent data and
constraints, thus makes the computation very efficient. As
a result, the proposed framework is very general, and it can
be extended to a lot of machine learning applications.
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