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Abstract. We present YORO - a multi-modal transformer encoder-only
architecture for the Visual Grounding (VG) task. This task involves lo-
calizing, in an image, an object referred via natural language. Unlike the
recent trend in the literature of using multi-stage approaches that sac-
rifice speed for accuracy, YORO seeks a better trade-off between speed
an accuracy by embracing a single-stage design, without CNN backbone.
YORO consumes natural language queries, image patches, and learnable
detection tokens and predicts coordinates of the referred object, using
a single transformer encoder. To assist the alignment between text and
visual objects, a novel patch-text alignment loss is proposed. Extensive
experiments are conducted on 5 different datasets with ablations on ar-
chitecture design choices. YORO is shown to support real-time inference
and outperform all approaches in this class (single-stage methods) by
large margins. It is also the fastest VG model and achieves the best
speed/accuracy trade-off in the literature. Code released 1.

1 Introduction

There has been significant recent interest in Vision-Language (VL) learning and
Visual Grounding (VG) [82, 84, 52, 10, 88, 75, 80, 46, 91, 43, 86, 78, 77, 2, 33].
This aims to localize, in an image, an object referred to by natural language, us-
ing a text query (see Fig. 1(a)). VG is potentially useful for many applications,
ranging from cloud-based image retrieval from large corpora to resource con-
strained problems on devices of limited computational capacity. For example, in
Fig. 1 (a), a robot must use its limited computing resources to resolve a natural
language query and locate the desired object. These applications currently pose
an extreme challenge to VG, by compounding the difficulty of the task itself with
the need to solve it efficiently. When this is the case, computational efficiency
becomes an unavoidable requirement of architecture design. Several examples
exist in the vision literature, where branches of computationally efficient archi-
tectures have evolved for problems like object recognition [24] or detection [61],
among others. The goal is not necessarily to develop the most powerful method
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Fig. 1: (a) Example of VG with limited computational resources. (b) Accuracy-Speed
plot: YORO surpasses real time FPS 15 and achieves better trade-off in the literature.

in the literature, but to find the best trade-off [27] between task performance
and some variable that reflects computation, e.g. speed or latency. This has led
to the introduction of architectures, such as the MobileNet family [24, 68, 23] for
recognition or the YOLO family [61, 62, 63, 3] for object detection, that have
become popular despite their weaker than state of the art accuracy. Given the
obvious relationship between object detection and VG, it is not surprising that
similar trends are starting to emerge for the latter. Like object detectors, VG
methods can be broadly grouped in two categories: single [80, 41, 6, 51, 79, 11]
and multi-stage [7, 82, 46, 70, 19] methods. Multi-stage methods typically rely
on a pre-trained visual backbone (such as the FasterRCNN [64]) as a visual en-
coder module. This simplifies the VG problem, reducing it to the selection of
the object proposals that best match the query text. Like multi-stage object
detectors, they are more accurate than single stage methods, but usually too
complex for the applications of Fig. 1 (a). In fact, the run-time complexity of
many of these VG systems is lower-bounded by the run-time computation of
the FasterRCNN [64] proposal stage, which is usually considered too expensive
even for object detection, in domains like robotics. In these domains, single-stage
detectors such as YOLO [61, 62, 63, 3] are the architecture of choice. Unsurpris-
ingly, the YOLO family has been the backbone of choice for various single-stage
VG systems [6, 80]. However, these and the other CNN-based single stage VG
systems [80, 41, 6, 51, 79] previously proposed in the literature lack the powerful
attention mechanisms that enable recent transformer architectures to excel at
multi-modal data fusion [11]. This usually results in weak accuracy.

In this work, we seek to endow single stage VG methods with transformer-
style attention, so as to enable a better trade-off between accuracy and speed
than currently available methods. For this, we propose an efficient and end-to-end
differentiable VG architecture, denoted asYou Only Refer Once (YORO). YORO
is inspired by a transformer architecture, ViT [14], that has achieved success
for image classification. ViT has also recently been extended to a transformer
architecture, ViLT [34], for vision-language tasks such as visual reasoning [71] or
visual question answering [20]. We investigate the more challenging extension of
ViLT for tasks that require object localization, such as VG. The main challenge is
how to establish explicit connections between words and bounding boxes without
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the addition of an object detector. Inspired by recent approaches to the design of
transformers for object detection [30, 4, 17], we augment the ViLT architecture
with a set of detection tokens that enable this localization. This makes YORO
an encoder-only multi-modal transformer architecture that consumes three data
streams: referred text tokens, an image in the form of flattened patches, and
learnable detection tokens. YORO then uses self-attention to fuse information
from all these streams in order to localize the referred object.

Similarly to transformer-based detectors [4, 17], YORO is trained by Hun-
garian matching between the localization hypotheses derived from its tokens and
the ground-truth bounding boxes. This combines a bounding box regression loss
that minimizes the difference between predicted and ground truth boxes and
a classification loss that associates the referred text to the bounding box. The
alignment between language and vision representations is further strengthened
by an object-text alignment loss that operates in feature space, encouraging the
visual features of the predicted object to match the text features of the cor-
responding text. However, this must be done carefully. In the early stages of
training, when object predictions tend to be incorrect, this object-text align-
ment loss can hamper learning. To both address this issue and encourage more
fine-grain alignment, we propose a novel patch-text alignment loss that aligns
features of input patches to their corresponding text. Extensive experiments on
five datasets show that YORO establishes the new SOTA for single stage VG
models. Overall, as illustrated in Fig. 1(b), YORO (red) achieves the best accu-
racy/speed trade-off among the methods in the literature. It has substantially
better accuracy than previous single stage VG methods (green) and is sub-
stantially faster than multi-stage VG models (blue). Ablation studies compare
different variants of the proposed model and demonstrate the effectiveness of the
proposed patch-text alignment loss. With this we summarize our contributions:

– A novel multi-modal visual grounding architecture YORO is proposed using
an encoder-only transformer (Sec. 3). YORO is a simple single-stage design
and is end-to-end trainable.

– A novel patch-text alignment loss is introduced for enabling fine-grained visual
language alignment (Sec. 4).

– YORO achieves the best accuracy/speed trade-off in the literature, outper-
forming existing real-time VG methods on five datasets (Sec. 5).

2 Related work

Prior work in visual grounding (VG) may be mainly classified into multi-stage
and single-stage approaches based on the design of the visual branch.

Multi-stage VG approaches [7, 19, 49, 50, 15, 9, 85, 82] usually leverage a
region proposal network (RPN) [64] to handle the selection of candidate object
locations. In a first-stage, the RPN proposes a set of object candidates. In a
second-stage, the VG model selects the region proposal that best matches the
query text. This reduces VG to a retrieval problem [25, 26, 66, 18], where the
model only needs to search within the proposed object candidates. Similarly to
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two-stage object detectors [45, 29], these methods are powerful for VG. How-
ever, like two-stage detectors, they tend to be computationally heavy, making
them impractical for real-time operation on complexity constrained devices, as
illustrated in Fig. 1. When compared to the object detection literature [45, 29],
the optimization of the trade-off between speed and performance has received
much less attention in VG. On the contrary, recent VG methods [9, 30] pur-
sue higher accuracy by adopting more powerful language models [58, 47] and
encoder-decoders transformer architectures [58, 73, 56, 87, 89, 59, 38] with more
parameters and slower speeds. Instead, YORO pursues a better trade-off between
accuracy and speed. In this context, it is not clear that a multi-stage architecture
is the best solution. Since there is no way to recover objects missed by the RPN,
strong performance can require a large number of proposals [86, 53], which is
inherently expensive. In fact, the use of a preliminary object selection prevents
the exploitation of contextual clues that may be available in the query text (e.g.
the component “on the top of the shelf” of the query of Fig. 1) and could be
critical for solving the task with less proposals. The integration of language and
vision is, after all, the difference between object detection and VG. This sug-
gests that single stage architectures, like YORO, could be more effective when
computation has a cost. Our experimental results support this hypothesis.

Single-stage VG approaches [80, 41, 6, 51, 79, 11, 1, 39] achieve greater
inference speeds by discarding the proposal generation stage. Most of these
methods are based on CNN object detectors, namely the single-stage detector
YOLOV3 [63]. This is, for example, adopted to extract visual features by SSG [6]
and FAOA [80]. These features are then fused with text features to regress the
bounding boxes. ReSC [79] improves FAOA [80] with a recursive sub-query con-
struction module. MCN [51] further extends YOLOV3 [63] for the joint solution
of VG and segmentation, using multitask losses. These models lack the power-
ful attention mechanisms of the transformer architecture, which are critical for
the integration of information both spatially, across image regions, and modally,
across the vision and language information streams. When compared to them,
YORO has the benefit of leveraging the transformer to implement this power-
ful integration of information. This enables substantially higher accuracy than
previous single-stage approaches. Recently, TransVG [11] has also adopted a
transformer model [73] to fuse language and vision features. While TransVG
does not use a two-stage object detector, it uses two stages of transformers. The
vision and language streams are first processed by independent transformers,
whose outputs are then fed to a multi-modal transformer that integrates the
two modalities. This makes it substantially slower than YORO, which performs
all operations with a single transformer, and could give rise to loss of informa-
tion needed to reason jointly about vision and language, as discussed above for
the RPN. The fact that TransVG is both slower and less accurate than YOLO
suggests that there is no benefit to the two transformer stage architecture.

Vision Transformer. YORO is based on the Vision transformer (ViT), intro-
duced in [14] for image classification by direct consumption of image patches,
i.e. without a preliminary CNN backbone. Beyond classification [14, 57, 72],
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the vision transformer has been applied to detection [4, 90, 17] and segmenta-
tion [60, 69], as discussed in the recent surveys of [32, 21]. Recently, ViLT [34]
has extended the ViT for various visual-language tasks that do not require ob-
ject localization, such as visual question answering. The extension to tasks, such
as VG, that require object localization is non-trivial. This is due to the need to
establish explicit connections between words and bounding boxes, which requires
much more fine-grained understanding of both language and images. YORO ad-
dresses this limitation by the addition of learnable detection tokens and Hungar-
ian matching between token-based object predictions and ground truth bounding
boxes, a component of modern transformer-based object detectors [4, 90, 17]. To
the best of our knowledge, it is the first architecture to perform VG tasks with an
encoder-only transformer without a visual backbone. This is critical for speed.
YORO is shown to achieve the best trade-off between speed and accuracy in the
VG literature, as illustrated in Fig. 1 (b).

3 YORO Architecture

The YORO architecture is summarized in Fig. 2. The input query sentence and
image are first converted into text and visual embeddings respectively. These
embeddings are augmented by a set of learnable detection tokens and fed into a
transformer encoder. Within the transformer, learning happens via self-attention
[73]. The transformer predicted features corresponding to the detection tokens
are finally fed into several heads, implemented with a multi-layer perceptron,
which produce class and bounding box predictions. The model is trained end-
to-end, using a combination of losses. Each model component is discussed next.

3.1 Multi-Modal Inputs

YORO consumes multi-modal inputs: language, vision and detection tokens.
The Language Modality is depicted in the blue block of Fig. 2. The referred
text is converted into sequences of tokens with a BERT tokenizer [12]. Assume
the sequence has lengthm and a dictionary size of v for the pre-trained tokenizer.
Each text token ti ∈ R

v in the sequence {t1; . . . ; tm} is then projected into a d
dimensional feature vector f l

i = W lti, where W l ∈ R
d×v is a projection layer.

The m projected token vectors are then augmented with a text classification
token f l

cls ∈ R
d. Similar to [34], each of these tokens is summed with a text

positional embedding f l
pos ∈ R

(m+1)×d and a modality type embedding f l
type ∈

R
(m+1)×d. The positional embedding specifies the location of each token, while

the modality type embedding tells apart the text input from visual input. The
overall text input embedding may be written as

f l = [f l
cls; f

l
1; . . . ; f

l
m] + f l

pos + f l
type. (1)

The Vision Modality is shown in the green block of Fig. 2. The input image
I ∈ R

H×W×3 is partitioned into n visual patches {p1, . . . , pn} of size s, where

pi ∈ R
s2×3 and n = HW

s2 . Each visual patch is then projected, with a linear layer

of weight matrix Wv ∈ R
d×(s2×3), into a d dimensional visual patch feature fv

i =
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Fig. 2: YORO architecture. Blue, green, yellow and pink blocks represent language,
vision, detection and prediction branches respectively. YORO does not use a large
pre-trained visual backbone. Input image is divided into patches. Those of IOU≥ 0.5
with ground truth box (red) are marked in light green.

Wvpi. Similar to the language input, the n visual patch features are augmented
with a visual classification token fv

cls ∈ R
d and summed with a visual positional

embedding fv
pos ∈ R

(n+1)×d and a modality type embedding fv
type ∈ R

(n+1)×d,
to produce an overall visual input embedding

fv = [fv
cls; f

v
1 ; . . . ; f

v
n ] + fv

pos + fv
type. (2)

Learnable Detection Tokens. The vision and language models above are simi-
lar to those implemented by ViT [14] and ViLT [34]. These models were proposed
for tasks, such as image classification or visual question-answering that do not
require object localization. In this case, the use of holistic classifications tokens
f l
cls, f

v
cls is sufficient to encode the image identity. However, our experiments (see

ablations in Sec. 5.3) show that this is not the case for VG, which depends crit-
ically on object localization. In the object detection literature, this problem is
addressed by introducing learnable detection tokens, which are individually as-
sociated with bounding boxes [4]. YORO leverages such tokens, as shown in the
yellow block of Fig. 2. The text f l and visual fv embeddings are complemented
by q learnable detection tokens fdet = [fdet

1 ; . . . ; fdet
q ]. Each token represents an

object and different tokens may represent objects of different sizes.

3.2 Transformer Encoder
YORO transformer encoder consists of D stacked layers, each including a multi-
headed self-attention (MSA) network and a feed forward network (FFN). De-
noting xd as the input of layer d, the transformer output is computed as follows:

x0 = [f l; fv; fdet] (3)

x′
d = xd−1 +MSA(LN(xd−1)), d = 1 . . . D (4)

xd = x′
d + FFN(LN(x′

d))), d = 1 . . . D (5)

where LN denotes layer normalization [73]. D is set to 12 in our experiments.

3.3 Multi-Modal Transformer Outputs
The transformer input [f l; fv; fdet] is a sequence of length n +m + q + 2. The
output is a sequence [ol; ov; odet] of the same length, where ol = [olcls; o

l
1; . . . ; o

l
m],
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ov = [ovcls; o
v
1; . . . ; o

v
n] and odet = [odet1 ; . . . ; odetq ], are the outputs of the language,

vision and detection branches respectively. The transformed text class token olcls
is added to the transformed detection tokens odeti before being passed to the de-
tection heads. This strengthens the dependence of the bounding box predictions
on the input text, beyond what would be possible by the use of attention alone.

3.4 Feature Projector and Detection Heads

To optimize YORO with the proposed losses, several modules are added to the
transformer output, including a detection head for the bounding box and classifi-
cation loss (red block in Fig. 2), and a projection head to enable the object-text
alignment and the patch-text alignment loss discussed in Sec. 4. All these heads
are stacked fully connected layers. We next discuss the details of all losses.

4 Training Losses

YORO is trained with 4 different losses: (1) a bounding box regression loss to
regress bounding box coordinates, (2) a classification loss to classify which text
tokens the bounding box is associated to, (3) an object-text alignment loss that
aligns detection token features with corresponding text features and (4) a novel
patch-text alignment loss that aligns image patches and text tokens. During
training, Hungarian matching [36] computes the optimal bipartite matching be-
tween predicted and ground truth boxes. During inference, the bounding box of
highest classification score is selected.

Bounding Box Regression Loss. Two losses are used for bounding box re-
gression: the L1 and the generalized IoU loss [65] Lgiou. These losses are applied
to ground truth bounding box Bg.t. ∈ R

4 and predicted box Bpred ∈ R
4 pairs.

This results in bounding box regression loss

Lbbox = λ1L1(Bpred, Bg.t.) + λ2Lgiou(Bpred, Bg.t.), (6)

where λ1 and λ2 are experimentally set to 2 and 5 respectively.

Classification Loss. Unlike the classification losses of object detection, where a
single object class is predicted, YORO predicts the set of language tokens to be
associated with a bounding box. This is needed to encourage the association of
the text phrase with the corresponding objects. For example, in Fig. 2 the red box
in the image is associated with the words “fuzzy” and “bench” with probabilities
0.5 and 0.5, respectively. This is implemented by generating predictions with a
softmax output of dimension equal to the maximum token length and using a soft
cross entropy loss Lsce based on the ground-truth text/object assignments. This
is the classification loss Lcls = Lsce(Ppred, Pg.t.), where Ppred is the predicted
probability distribution and Pg.t. the ground truth distribution.

Object-Text Alignment Loss. Inspired by recent uses of region-text align-
ment for fusing words and image regions [30, 7, 40, 13, 37, 5], YORO further
aligns the language transformer output ol and the detection transformer output
odet in a suitable feature space. ol and odet are first mapped to a common fea-
ture space F , with projection headsHl andHdet, which implement the mappings



8 Ho et al.

ôl = Hl(o
l) and ôdet = Hdet(o

det), where Hdet, Hdet are linear projections. Con-
sider an image with g ground truth bounding boxes and let Ti ⊆ {j : 1 ≤ j ≤ m},
where m is the length of the language token sequence, be the subset of language
token indices that a projected detection feature ôdeti should be aligned to. This
alignment is encouraged with the object-to-text alignment (OTA) loss

LOTA =

g
∑

i=1

1

|Ti|

∑

j∈Ti

− log

(

exp(ôdet
⊺

i ôlj/τ)
∑m

k=1 exp(ô
det⊺
i ôlk/τ)

)

, (7)

where τ is experimentally set to 0.07 . Consider Fig. 2 and assume, for example,
that detection token 4 is selected to match the groundtruth (red) bounding
box by the Hungarian matching algorithm. In this case, LOTA encourages the
embeddings ôl0 and ôl1 of the words “fuzzy” and “bench” to be closer to the
embedding of ôdet4 than those of the words “closest,” “to,” and “you”.

Similarly, letOi ⊆ {j : 1 ≤ j ≤ g} be the set of object indices that a projected
language token feature ôli should be aligned to. This alignment is encouraged by
the text-object alignment loss LTOA

LTOA =

m
∑

i=1

1

|Oi|

∑

j∈Oi

− log

(

exp(ôl
⊺

i ôdetj /τ)
∑g

k=1 exp(ô
l⊺
i ôdetk /τ)

)

, (8)

which is a symmetric version of LOTA. The overall object alignment loss is
LOA = 1

2L
OTA + 1

2L
TOA.

Patch-Text Alignment Loss.While the object-text alignment loss is desirable
to encourage feature space alignment between predicted boxes and correspond-
ing text tokens, this assumes that the predicted boxes are correct. However,
as illustrated in Fig. 3, this assumption is frequently violated during training,
especially in the early epochs. In this case, the object-text alignment loss can
provide ambiguous supervision (e.g. supervision from background instead of the
object in the early epochs of Fig. 3). To address this limitation, we propose to
align the features extracted from the ground truth patches at the input of the

network (green patches of Fig. 2) with the features of the associated text tokens.
More specifically, the indices of input patches (p5 and p6 in Fig. 2) that have at
least 0.5 IOU with the ground truth box (red box in Fig. 2) are first identified
and the corresponding features aligned with those of the ground truth language
tokens (“fuzzy” and “bench” in Fig. 2). As shown in Fig. 3, while each patch
feature may not provide full information about the object, the patch features
never provide contradictory supervision. This helps stabilize the learning.

To align text and patch features, the text transformer output ol and vision
transformer outputs ov are first projected to a shared feature space using the
patch alignment projection heads HPA

l and HPA
v respectively, which leads to

õl and õv. Given m text tokens and n visual patches, a ground truth table
A ∈ R

m×n is then created, where Aij is 1 if text token i and visual patch j
should be aligned and 0 otherwise, as shown in Fig. 4(a). This matrix is column



YORO - Lightweight End to End Visual Grounding 9

Epoch 0 Epoch 5 Epoch 20

Fig. 3: Visualization of predicted box through training epochs. Red, green and blue
boxes indicate ground truth box, ground truth patch and predicted box respectively.
Patch-Text Alignment loss helps localization. Best viewed in color digitally.
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Fig. 4: Patch-Text Alignment Loss: (a) Ground truth for patch-text alignment. (b)
Column wise normalization (c) Row wise normalization.

normalized into matrix AC (Fig. 4 (b)) using

Ac
ij =

{

Aij∑
i
Aij

if i ∈ STPA

0 otherwise
, (9)

where STPA = {i|
∑

i Aij > 0} is the set of token indices associated with at least
1 patch. For example, STPA = {1, 2} for Fig. 4. The row-wise normalization of
A into matrix Ar is defined in a similar fashion, as shown in Fig. 4 (c).

To encourage the fine-grained alignment between patches and text, a text-
patch alignment loss LTPA is defined as

LTPA =
∑

i

∑

j

pcij ln
pcij
Ac

ij

∀i ∈ STPA, (10)

where pcij =
exp(õl

⊺

i õvj )/τ∑
k
exp(õl

⊺

i
õv
k
)/τ

is a contrastive distribution defined over the language

and visual embedding. For example, the word “fuzzy” (t1) of Fig. 4(b) should
be aligned with patch p5 and p6 according to the ground truth distribution
Ac

1 = [0; 0; 0; 0; 0.5; 0.5]. (10) minimizes the KL divergence between this and the
predicted distribution pc1 = [pc11; . . . ; p

c
1n]. This encourages the alignment of the

feature vector õl1 extracted from word t1 with the feature vectors õv5 and õv6
extracted from patches p5 and p6.

Similar to the LTPA of (10), the patch-text alignment loss LPTA aligns each
patch to its associated tokens. As shown in Fig. 4(c), p6 should be aligned to t1
and t2. The final patch alignment loss LPA is LPA = 1

2L
TPA + 1

2L
PTA.
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Table 1: Architecture Design Ablation: Comparison between YORO and ablated
versions missing either learnable det tokens (w/o det) or cls feature o

l

cls (w/o cls).

Model Variant Refcoco Refcoco+ Refcocog
Val TestA TestB Val TestA TestB Val Test

YORO w/o det. 74.9 (-8.0) 79.4 (-6.2) 68.8 (-8.6) 66.6 (-6.9) 73.2 (-5.4) 59.2 (-5.7) 69.7 (-3.7) 68.9 (-5.4)
YORO w/o cls. 82.4 (-0.5) 84.8 (-0.8) 76.7 (-0.7) 72.8 (-0.7) 77.7 (-0.9) 64.0 (-0.9) 72.4 (-1.0) 73.9 (-0.4)
YORO 82.9 85.6 77.4 73.5 78.6 64.9 73.4 74.3
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Fig. 5: (a) YORO w/o det. token. (b) YORO w/o cls. feature o
l

cls.

Combined Loss The final loss combines the bounding box regression loss, the
classification loss, the object alignment loss and the patch alignment loss with
L = Lbbox + Lcls + LOA + LPA.

5 Experiments

5.1 Dataset

YORO is evaluated on five VG datasets using the accuracy metric, where the
predicted box is correct when the IOU with the ground truth box is at least 0.5.
RefCoco/RefCoco+/RefCocog [31, 83] are curated from MSCOCO [42].
RefCOCO consists of 142,209 referred expressions for 50,000 objects in 19,994
images. We adopt the split of [10, 88, 75, 81, 44, 7, 70] into train, val, testA, and
testB datasets with 120,624, 10,834, 5,657 and 5,095 expressions respectively.
RefCOCO+ contains 141,564 expressions for 49,856 objects in 19,992 images.
We use the split of [91, 43, 6, 51, 81, 19], where train, val, testA and testB
datasets contain 120,191, 10,758, 5,726 and 4,889 image text pairs, respectively.
RefCOCOg consists of 85,474 image text pairs of 54,822 objects across 26,711
images. We adopt the UMD split of [82, 46, 43, 78, 51], into 80,512, 4,896 and
9,602 pairs for train, val and test dataset, respectively.
ReferItGame [31] contains 19,997 images from the SAIAPR-12 [16] dataset. It
has 130,363 text expressions for 99,296 objects. We follow the split of [25, 88,
52, 82, 74] for training, testing and validation set.
CopsRef [8], derived from GQA [28], contains 508 object classes and average
expression length 14.4. When compared to RefCOCO and RefCOCOg (80 object
classes and average length around 6), CopsRef has longer expression and more
diverse object classes. We adopt the WithoutDist version of the dataset [8, 15],
where train, val and test contains 119,628, 12,586 and 16,524 pairs respectively.

5.2 Training and Evaluation Details

We summarize some implementation details for reproducibility. YORO uses
bert-base-uncase [12] pre-trained tokenizer from HuggingFace [76] with a max-
imum text length of 40. The pre-trained checkpoint from [34] is used to obtain
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Table 2: Loss Ablation. CL: Classification loss, RE:
Bounding box regression loss, OA: Object-text Align-
ment Loss and PA: Patch-text Alignment loss.

Loss CopRef ReferItGame
CL RE OA PA Val. Test Val. Test

✓ ✓ 67.05 70.78 71.55 69.86
✓ ✓ ✓ 67.73 (+0.68) 71.0 (+0.22) 71.89 (+0.34) 70.39 (+0.53)
✓ ✓ ✓ ✓ 68.08 (+1.03) 71.3 (+0.52) 72.67(+1.12) 71.9 (+2.04)

Table 3: Ablation of
number of detection to-
kens on RefCoco+.

Det. Tok. #
RefCoco+

Val. TestA TestB

1 73.2 79.1 64.9
5 73.5 78.6 64.9
10 72.8 78.78 62.8

initial weights. Five detection tokens are used (see Table 3 for a token number
ablation) and randomly initialized using a normal distribution of zero mean and
standard deviation 0.02. The AdamW optimizer [48] with initial learning rate
of 10−4 and weight decay of 10−2 is adopted. This warm up setting is used for
the first 10% training epochs and the learning rate is then linearly decayed to
0. YORO is pre-trained on the concatenated detection dataset curated by [30]
for 40 epochs. Since the VG task contains a single referred object, image-text
pairs with a single bounding box are sampled. This pre-training allows a good
initialization of the detection branch. The pre-trained model is fine-tuned on
downstream datasets for 40 epochs. All experiments are conducted using Py-
Torch [54] with batch size 128. No VL augmentation like MixGen [22] was used.

5.3 Ablation study

Architecture Design. The performance of YORO is compared to the two
variants of Fig. 5 on RefCoco/RefCoco+/RefCocog, with the results of Table 1.
YORO w/o det. token. Fig. 5(a) shows a simple extension of the ViLT [34]
architecture to VG. In this case, the classification feature of the text modality
olcls (See Sec. 3.3) is forwarded through the detection head to regress a bounding
box, without the use of detection branch or any detection tokens. The first
row of Table 1 shows that, when compared to YORO, this is between 3.7%
and 8.6% worse. For almost all splits, the performance loss is larger than 5%,
demonstrating a clear benefit in using detection tokens for the VG task.
YORO w/o cls. feature olcls. Conversely, the use of detection tokens without
the holistic classification feature olcls is implemented with the architecture of
Fig. 5(b). This performs slightly worse (0.4% to 1%) than YORO. The holistic
feature contributes to YORO’s performance but is much less critical than the
detection tokens. Altogether, these ablations support the proposed design.

Loss Function. Table 2 studies the importance of the various losses in Sec. 4.
The baseline consists of classification (CL) and bounding-box regression (RE)
losses. Adding object-text (OA) alignment loss improves accuracy by +0.22%
and +0.53%. When the PA loss is optimized, the gain over baseline increases to
+0.52% and +2.04% on the test set of CopsRef and ReferItGame respectively.
This indicates both OA and PA loss improve detection accuracy on multiple
datasets. The improved performance of PA validates the importance of account-
ing for the inaccuracy of bounding box predictions in the early training epochs.

Number of Detection Tokens. Table 3 presents an ablation of the number of
detection tokens. On average, using 1 or 5 tokens has comparable results, with a
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Table 4: Refcoco/Refcoco+/Refcocog. Compared with single-stage models, YORO
achieves the best accuracy. YORO is one of the smallest models and is also the fastest.

Method
Backbone Refcoco Refcoco+ Refcocog Param.

FPS
Lang. Visual Val TestA TestB Val TestA TestB Val Test (M)

FAOA [80] Bert Darknet53 72.05 74.81 67.91 - - - - - 182.9 18.9
RCCF [41] BiLSTM DLA34 - 81.06 71.85 - 70.35 56.32 - - - 40
SSG [6] BiLSTM Darknet53 - 76.51 67.50 - 62.14 49.27 58.80 - - -
MCN [51] BiGRU Darknet53 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01 - -
ReSC [79] Bert Darknet53 76.59 78.22 73.25 63.23 66.64 55.53 64.87 64.87 179.9 15.8
TransVG [11] Bert Res101 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73 149.7 18.1
YORO Bert Linear 82.9 85.6 77.4 73.5 78.6 64.9 73.4 74.3 114.3 41.9

Table 5: Compared to single/two-stage
methods, YORO achieves SOTA on
ReferItGame [31].

Two-stage Acc. Single-stage(*) Acc.

CMN [25] 28.33 RCCF* [41] 63.79
VC [88] 31.13 SSG* [6] 54.24
Luo [52] 31.85 ReSC-B* [79] 64.33
MAttNet [82] 29.04 ReSC-L* [79] 64.60
Sim. Net [74] 34.54 FAOA* [80] 59.30
CITE [55] 35.07 ZSGNet* [67] 58.63
PIRC [35] 59.13 TransVG* [11] 70.73
DDPN [86] 63.00 YORO * 71.90

Table 6: YORO achieves SOTA on Cop-
sRef [8] w/o using g.t. box.

Method (* indicates single stage) Proposal Acc.

GroundeR [66] g.t. 75.7
Shuffle-GroundeR g.t. 58.5
Obj-Attr-GroundeR g.t. 68.8
MattNet [82] g.t. 77.9
CM-Att-Erase [46] g.t. 80.4
MattNet-Mine [8] g.t. 78.4

VGTR-ResNet50 [15] Pred. 66.73
VGTR-ResNet101 [15] Pred. 67.75
ReSC-B* [79] Pred. 64.49
ReSC-L* [79] Pred. 65.32
YORO * Pred. 71.3

slight decrease for 10 tokens. Since the VG task only contains a single referent,
the lack of benefit in using a large number of detection tokens is sensible.

5.4 Quantitative Comparison
RefCoco/RefCoco+/RefCocog. Table 4 summarizes performance of single-
stage methods on RefCoco, RefCoco+ and RefCocog for different splits (val,
testA and testB). These are the methods that achieve real time speed (FPS > 15)
and thus directly comparable to YORO. YORO outperforms all single stage
methods on seven splits (between abs +1.88% and +8.6%). The only exception is
Refcoco testB (-0.95% lower than TransVG [11]). The most competitive method
in this class is TransVG, which has 1.3× the size, is 2.3× slower than YORO, and
achieves significantly lower accuracies on most splits. The only method of speed
comparable to YORO (RCCF) has significantly lower accuracy on all splits (up
to a 14 point drop on Refcocog Val). A more extensive comparison, including
the much heavier two stage models, is presented in the appendix. Overall, as
summarized in Fig. 1(b) and Fig. 6, YORO has a significantly better trade-off
between speed, parameter size and accuracy than all methods in the literature.
ReferItGame. Table 5 compares YORO to both two-stage (left) and single-
stage (right) baselines. YORO outperforms the best two-stage (DDPN [86]) and
single-stage (TransVG [11]) method by 8.9% and 1.2% respectively. For roughly
the same inference speed, YORO also beats RCCF [41] by 8.1%. Note that
YORO achieves SOTA on ReferItGame for both speed and performance.
CopsRef. Table 6 summarizes the accuracy of YORO and the baselines on
CopsRef [8]. The lower part of the table contains baselines that either detect
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the referent or select the referent from object proposals. YORO outperforms the
previous SOTA by 3.4%, without using proposals. The upper part of the table
refers to models that use ground truth bounding boxes. YORO fares well even
under this unfair comparison, outperforming some of these baselines. Overall,
these results demonstrate that YORO can generalize to VG datasets containing
more object classes and longer input text.

5.5 Comparison of Trade-offs Between Size, Speed, and Accuracy

To quantify the efficiency of YORO, we compare YORO with other VG baselines
in terms of parameter size and inference speed.

Inference speed (FPS) is measured by forwarding 100 images (batch size 1)
from the Refcoco testA dataset through the VG model. The results are shown in
the rightmost column of Table 4 and Fig. 1(b). All FPS measurements besides
RCCF [41], MattNet [82] and DGA [78] were conducted by ourselves, using a
single Titan Xp GPU and Intel Xeon CPU E5-2630 v4 @ 2.20G2. The FPS
of [41, 82, 78] are copied from [41], which measures speed on a Titan Xp GPU
(identical to ours) and Intel Xeon CPU E5-2680v4 @ 2.4G (superior to ours).
YORO achieves 41.9 FPS and is the fastest VG model in the literature. It is
between 3.3× and 14× faster than multi-stage models and at least twice as fast
than all single-stage models other than RCCF, which has much weaker accuracy.

Fig. 1(b) summarizes the trade-off between speed and accuracy of several
methods on Refcoco testA. Single-stage methods tend to have significantly lower
accuracy than multi-stage methods. The major exception is YORO, which is
substantially more accurate than the other single-stage methods, bridging a sig-
nificant portion of the accuracy gap between the two types of models. Note that
YORO is well above the line connecting MDETR and RCCF, which determines
the Pareto front for the VG problem. It also has a large gain in inference speed
(close to 3.5× faster) over MDETR. More plots are shown in the supplemental.

We also breakdown the percentage of inference time consumed per YOLO
module. Multi-modal VG inputs (Sec. 3.1), transformer encoder (Sec. 3.2) and
detection head (Sec. 3.4) consume 33.5%, 62.8% and 3.7% of the inference time,

2 Note that [80] reported a FPS of 26.3 for FAOA, using an NVIDIA 1080TI and Intel
Core i9-9900K @ 3.60G set-up, while we measured a FPS of 18.9 under our set-up.
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(a) remote at 900 (b) raspberries (c) a sandwich with
colby jack cheese ,
tomato , and lettuce ,
on fresh cut bread

(d) a computer screen
with a blue back-
ground and itunes
open

(e) horse 2nd from left (f) blue bldg , top floor
leftest window

(g) The cat that is not
brown and that is not
to the right of the chair

(h) The tree that is not
leafless and that is not
to the right of the sign

Fig. 8: YORO Qualitative: Visualization of the predicted box (blue) and ground
truth box (red) in Refcoco+ (a-b), Refcocog (c-d), ReferItGame (e-f) and CopsRef
(g-h). The input text for the referent is listed below each image.

respectively. This suggests that future research should focus on optimizing the
design of the transformer layers for both speed and accuracy.

Parameter sizes are compared in the second column from the right of Table 4
and Fig. 6. YORO is smaller than all baselines besides NMTREE [43], which uses
a LSTM based language model. Note that, in particular, YORO is the smallest
of the single-stage methods (See green × in Fig. 6).

5.6 Qualitative Results

Fig. 7 shows the patches of higher attention weight for two example images,
computed as follows. Let the detection token corresponding to the predicted box
be token k. The attention weight between each patch and detection token k is
converted to an heatmap and overlaid on the input image. It is clear that YORO
attends to the referred objects. See appendix for other examples. Fig. 8 and the
appendix show predictions by YORO on all 5 datasets. YORO can perform
high quality detection not only on short sentences (a-b), but also on longer and
convoluted sentences (c-h). It also performs well in the presence of challenging
input text, such as the digits of (a,e), abbreviation of (f), and objects of various
sizes (b,f,h).

6 Conclusion

In this work, we investigate the speed accuracy trade-off of VG models. To
pursue a better trade-off, we proposed YORO, a single-stage end-to-end train-
able architecture. A novel patch-text alignment loss is proposed to improve the
alignment between language and image features. Experiments show that YORO
outperforms existing single-stage methods. It is the fastest VG and achieves the
best trade-off between size, speed, and accuracy in the literature. We believe this
is of interest for many resource constrained VG applications.
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