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A Limitation and Broader Impact

In this work, we designed a visual grounding (VG) model which has less parame-
ters than state-of-the-art and has inference speed much faster than real-time (15
fps). YORO is the fastest VG methods in the literature and out-performs single-
stage VG approaches by large margins. It also achieves better speed/accuracy
trade-off than multi-stage VG models with 3.3× to 14× faster speed.

We believe our approach being light-weight will facilitate visual grounding
(VG) in devices with less computation resources, such as edge devices, mobile
robots, low-powered devices (e.g. Raspberry-Pi), and AR/VR devices. In addi-
tion, the proposed model requires less computation resources which is likely to
be environmental friendly. These aspects warrant further research and consider-
ation.

B Patch-Text Supervision

Figure 1 shows the predicted bounding box (blue) and ground truth box (red) of
a same image across different epochs. It can be observed that the predicted box
gradually becomes more accurate from epoch 0 to epoch 40 and shifts around
various locations in different epochs. On the contrary, the green ground truth
patches, that have IOU≥ 0.5 with the ground truth box, stay consistent through-
out the training epochs and make the proposed patch-text alignment loss a more
stable. This shows the need for proposed novel patch-text loss.

C Parameter Size / Accuracy and Speed /Accuracy Plots

More comparisons on Parameter size vs Accuracy and Inference Speed vs Accu-
racy are provided here (w.r.t. Sec. 5 in main paper). We hope the community is
inspired to consider other factors which make the technology useful (like infer-
ence speed and parameters) and not just on only Accuracy and the race to beat
state-of-the-art in performance metrics.

⋆ Work done during an internship at Amazon.
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Fig. 1: Patch-Text Supervision: Need for consistent supervision for patch-
alignment loss. Ground truth box is marked in red and green patches have over-
lapped with red box with IOU≥ 0.5. Blue box is the prediction across different
epochs.

Figure 2, 3 and 4 illustrate the trade-off between the accuracy and the infer-
ence speed in terms of FPS for RefCoco, RefCoco+ and RefCocog, respectively.
YORO achieves better trade-off between the speed and accuracy in different
datasets.

Figure 5, 6 and 7 illustrate the trade-off between the accuracy and the num-
ber of parameter used by each baseline for RefCoco, RefCoco+ and RefCocog,
respectively. YORO achieves competitive accuracy with smaller model size.

This indicates YORO is more suitable for edge devices used in robotic appli-
cations and AR/VR devices.

D Qualitative Results

More qualitative visualizations from YORO are shown here (w.r.t Sec. 5 in main
paper). Keeping transparency in mind, we show random correct and incorrect
samples.
Correct Examples. Figure 8 contains correct detection results from YORO
output. Examples from RefCoco and RefCoco+ have shorter query text, while
examples from RefCocog are associated to more descriptive text. YORO can
handle query text of various length and correctly detect the referent when the
query contains digits. While the odd rows contain the predicted bounding box,
the even rows show the patches that higher attention weight. More specifically,
assuming the k

th detection token corresponds to the predicted bounding box,
we extract the transformer attention weight between each patch and the k

th

detection token. The attention weight is then converted to heatmap and overlaid
on the input image. Take Figure 8(d) for example. Most patches around the
bottom orange have higher attention weight.
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Fig. 2: Speed Accuracy Plot on RefCoco val, testA and testB dataset.
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Fig. 3: Speed Accuracy Plot on RefCoco+ val, testA and testB dataset.
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Fig. 4: Speed Accuracy Plot on RefCocog val, test dataset.
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Fig. 5: Memory Accuracy Plot on RefCoco val, testA and testB dataset
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Fig. 6: Memory Accuracy Plot on RefCoco+ val, testA and testB dataset
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Fig. 7: Memory Accuracy Plot on RefCocog val, test dataset
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(a) top pizza (b) leftmost
small glass

(c) let green apple (d) bottom
slice

(e) food nearest to
us

(f) middle
piece

(g) clock at 1115 (h) apples

(i) a man stand-
ing next to a
young girl on a
grassy hillside

(j) skiier in red
pants

(k) a parked
white ford
suv

(l) the orange
closest to the
banana

Fig. 8: Visualization of the predicted box (blue) and ground truth box (red)
in Refcoco (a-d)/Refcoco+(e-h)/Refcocog(i-l) dataset. The patches that have
higher attention are highlighted in the even rows.
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D.1 Full Comparison with State of the Art

Table 1 extends the comparison of YORO with both single stage and multi-stage
methods. Note that comparing YORO with multi-stage methods in terms of ac-
curacy is not an apples-to-apples comparison, because multi-stage methods
tends to sacrifice speed for accuracy improvement with the use of resource con-
suming models. The table is divided into blocks with the top performance within
each block in bold.
(Bi)LSTM language model Two-stage methods: These methods are based
on small (LSTM-based) language models of relatively few parameters that severely
under-perform transformer-based approaches. Note that, for these models, pa-
rameter size does not correlate with inference speed, due to recursive LSTM
computations. In fact, these are the slowest models considered. YORO signif-
icantly out-performs all these models in most splits (up +7 abs points), for
marginally higher memory complexity (7% increase) and much faster inference
(10× speed up).
BERT language model Two-stage methods: The main difference between
YORO and these methods is the elimination of the visual backbone. This dras-
tically reduces parameter size (between 60% and 74% of the parameters) and
boosts inference speed by a substantial amount (between 4× and 7× speed-up).
Despite these gains, YORO is comparable to the best of these methods, achiev-
ing superior performance on Refcoco val/testB (between +1.25 and +2.9) and
comparable in other splits.
Encoder-Decoder multi-stage methods: Like YORO , these methods are
transformer-based but use more powerful encoder-decoder models. While it has
been argued that encoder-decoder models have more powerful predictive capabil-
ity than encoder-only approaches [23, 1, 9], YORO outperforms all the methods
in this class other than MDETR by large margins (between abs +3.0% and
+10.1%). The comparison to MDETR is more complex, because it also uses the
more powerful RoBERTa [18] language model. This enables MDTER to achieve
higher accuracies, but also makes it a lot larger (1.3×) and slower (3.4×) than
YORO .
Single-stage methods: These are the methods directly comparable to YORO .
YORO outperforms all these methods on seven splits (between abs +1.88% and
+8.6%). The only exception is Refcoco testB (-0.95% lower than TransVG [6]).
The most competitive method in this class is TransVG, which has 1.3× the size
and is 2.3× slower than YORO but achieves significantly lower accuracies on
most of the splits. On the other hand, the only method of speed comparable
to YORO (RCCF) has significantly lower accuracy on all splits (up to a 14
point drop on Refcocog Val). Overall, YORO has a significantly better trade-off
between speed, parameter size and accuracy than all these methods.
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Table 1: Refcoco, Refcoco+ and Refcocog. YORO achieves SOTA perfor-
mance when compared with single-stage models. YORO is one of the smallest
models and is also the fastest. Bold type indicates the best model in each block.

Method
Backbone Refcoco Refcoco+ Refcocog Param.

FPS
Lang. Visual Val TestA TestB Val TestA TestB Val Test (M)

Two-Stage Vision-Language methods based on (Bi)LSTM for Language Model

S.L.R. [31] LSTM VGG16 - 72.94 62.98 - 58.68 47.68 - - - -
Luo [22] BiLSTM VGG16 - 67.94 55.18 - 57.05 43.33 - - - -
Deng [5] LSTM VGG16 81.27 81.17 80.01 65.56 68.76 60.63 - - - -
VC [33] LSTM VGG16 - 73.33 67.44 - 58.40 53.18 - - - -
LGRAN [25] LSTM VGG16 - 76.6 66.4 - 64.0 53.4 - - - -
Liu [16] LSTM VGG19 - 72.08 57.29 - 57.97 46.20 - - - -
MattNet [30] BiLSTM Res101 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01 - 3.2
CM-Att-Erase [17] LSTM Res101 78.35 83.14 71.32 68.09 73.65 58.03 67.99 68.67 - 5.1
CMN [12] LSTM VGG16 - 71.03 65.77 - 54.32 47.76 - - - -
DDPN [32] LSTM Res101 76.8 80.1 72.4 64.8 70.5 54.1 - - - -
DGA [26] BiLSTM VGG16 - 78.42 65.53 - 69.07 51.99 - 63.28 - 3
PLAN [34] LSTM VGG16 - 75.31 65.52 - 61.34 50.86 - - - -
RvGTree [11] BiLSTM Res101 75.06 78.61 69.85 63.51 67.45 56.66 66.95 66.51 - -
NMTREE [15] BiLSTM Res101 76.41 81.21 70.09 66.46 72.02 57.52 65.87 66.44 106.5 -

Two-Stage Vision-Language methods based on Bert-base for Language Model

Uniter [3] Bert-B Res101 81.24 86.48 73.94 75.31 81.3 65.58 74.31 74.51 190.3 8.1
VLBERT [24] Bert-B Res101 - - - 71.6 77.72 60.99 - - 155.1 10.5
VILLA [10] Bert-B Res101 81.65 87.4 74.48 76.05 81.65 65.7 75.9 75.93 191.5 8.3
ERNIE ViLL [29] Bert-B Res101 - - - 74.02 80.33 64.74 - - - -
12 in 1 [20] Bert-B ResXT152 - 80.58 - 73.25 - 75.96 - -
ViLBERT [19] Bert-B Res101 - - - 72.34 78.52 62.61 - - 364 6

Multi-Stage Vision-Language methods - Encoder-Decoder Transformers.
*Note: these approaches are more powerful than encoder-only models.

VGTR [8] Bi-LSTM Res50 78.29 81.49 72.38 63.29 70.01 55.64 64.19 64.01 - -
VGTR [8] Bi-LSTM Res101 79.20 82.32 73.78 63.91 70.09 56.51 65.73 67.23 - -
VL-T5 [4] T5 Res101 - - - - - - - 71.3 304.9 6.7
VLT [7] RNN Res50 76.20 80.31 71.44 64.19 68.40 55.84 61.03 60.24 - -
MDETR [13] Roberta-B Res101 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 185.2 12.24
MDETR [13] Roberta-B ENB3 87.51 90.4 82.67 81.13 85.52 72.96 83.35 83.31 152.6 12.57

Single-Stage Vision-Language methods

FAOA [28] Bert Darknet53 72.05 74.81 67.91 - - - - - 182.9 18.9
RCCF [14] BiLSTM DLA34 - 81.06 71.85 - 70.35 56.32 - - - 40
SSG [2] BiLSTM Darknet53 - 76.51 67.50 - 62.14 49.27 58.80 - - -
MCN [21] BiGRU Darknet53 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01 - -
ReSC [27] Bert-B Darknet53 76.59 78.22 73.25 63.23 66.64 55.53 64.87 64.87 179.9 15.8
TransVG [6] Bert-B Res101 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73 149.7 18.1
YORO Bert-B Linear 82.9 85.6 77.4 73.5 78.6 64.9 73.4 74.3 114.3 41.9

RefCoco CopsRef
Pretraining val testA testB val test

w/o 73.4 78 67.1 64.4 69.5
w/ 82.9 (+9.5) 85.6 (+7.6) 77.4 (+10.3) 68.08 (+3.68) 71.3 (+1.8)

Table 2: Ablation w/ and w/o pre-training.
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D.2 Ablation on Model Pretraining

As mentioned in the main paper, YORO is pre-trained on the concatenated
detection dataset curated by [13] to allow a good initialization of the detection
branch. Table 2 further highlights the importance of the pre-training on RefCoco
and CopsRef dataset. The averaged gains are 9.13% and 2.74% on RefCoco
and CopsRef respectively. This supports the need of pre-trainng stage for the
detection branch.
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