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Abstract—Currently, there is no cure for Alzheimer’s disease
(AD), but its early detection is essential to an effective treatment,
slowing down the progression of symptoms. Consequently, the
development of automatic diagnostic tools, which use as principal
source of information three-dimensional images of the brain, has
attracted great interest in recent years. This work focused on
PET images and studied alternatives to two of the main building
blocks of a computerized diagnostic system: the extraction and
selection of features. Regarding the common approach based
on Voxel Intensities (VI), the FDG-PET image was studied for
different scales and resolutions. In addition, the use of a measure
of local contrast was also tested, as well as the widely known
texture descriptor, Local Binary Patterns (LBP), to which a novel
extension to three-dimensional data was proposed. As regards
selection, a new method based on data acquired by the Eye
Track technology during the inspection of PET images by an
expert physician was proposed. The aim of this method is to
model the behavior of the gaze over time, and use the model
to select the features that the expert found most interesting.
Moreover, other more conventional methods based on correlation
measures and mutual information were also studied. The Support
Vector Machine (SVM) classifier was used to perform binary
classifications among AD patients, patients with Mild Cognitive
Impairment (MCI) and a control group (in a dichotomous
fashion), obtaining comparable or superior performances to those
achieved by most systems found in the literature.

Index Terms—Alzheimer’s Disease, Computer Aided Diagno-
sis, Positron Emission Tomography, Feature Extraction, Feature
Selection, Eye Tracking.

I. INTRODUCTION

ALZHEIMER’s disease is a neurological disorder that
mostly affects people over 65 years old and whose

incidence rate grows exponentially with age. It is a progressive
disorder meaning that it worsens over time, affecting memory,
cognitive and physical capabilities, and eventually leading to
death. Currently, no treatment can cure or stop the progress
of AD, but some pharmaceuticals have proven effective to
slow down the advance of symptoms, especially if the disease
is detected in its early stages. A syndrome that is proved
to be related with the preclinical stage of AD is the Mild
Cognitive Impairment (MCI) and thus its diagnosis is essential
to improve patients’ life quality.

The diagnosis is often performed by the primary care physi-
cian and is based on the cognitive and behavioral history of the

patient, which is usually assessed based on direct interviews
with the patient himself or with relatives, and through the
usage of several cognitive, physical and neurological tests. An
example of such test is the Mini Mental State Exam (MMSE).
Neuroimaging techniques are also used, when available, to
increase the confidence of diagnosis because a definite diag-
nosis is only possible post-mortem in histological examination.
PET is a nuclear medicine imaging technique whose operating
principle relies on the detection of pairs of gamma rays
emitted by a positron-emitting radionuclide, also known as
tracer, which is introduced into the body on a biologically
active molecule [1]. When FDG, which is an analogue of
glucose, is used as the biologically active molecule, the scan
produces an image that measures the regional glucose uptake,
and thus when a tomography is performed on the brain, the
subsequent image measures the brain metabolism directly,
allowing for the detection of what is believed to be the earliest
observable anomaly associated with AD: the reduction of the
metabolism in certain areas of the brain [2]. In fact, in the
last 20 years, research on the diagnostic value of FDG-PET in
AD consistently showed a reduction in the cerebral metabolic
rate for glucose (CMRglc) and perfusion present in several
structures of the brain [3], [4].

A. State of the Art

In the last decade, several Computer Aided Diagnostic
(CAD) systems have been proposed. They use the discrimina-
tive value of brain images produced by several neuroimaging
techniques, namely, PET [5]–[7], MRI [8], [9] and SPECT
[10], [11], to distinguish between people suffering from AD
or MCI from normal controls.

Features retrieved from the brain image play an important
role in the success of a given system and a considerable effort
has been made to find more discriminant features. In what
concerns the type of features, previous studies can be cataloged
in two distinct classes: those who use regions of interest (ROIs)
[11], [12] and those who use the whole brain [6], [13]. CAD
systems based on ROIs directly integrate previous knowledge
about the disease and reduce significantly the dimensional-
ity of the feature vectors, therefore alleviating the curse of
dimensionality. In addition, highly specific characteristics of
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those ROIs, such as the volume of gray matter tissue [14],
[15] or the shape of the hippocampus [15], [16] can be used
as features. However, this approach has its own disadvantages.
It requires the choice, in advance, of the ROIs to be studied,
and the manual or semi-automatic extraction of those regions
is unavoidable, which is a difficult, time-consuming and user
dependent task. This is the reason why CAD systems that build
their classifier over the whole brain, without further knowl-
edge, also share the limelight of recent research. In this second
category, the most common feature is the raw voxel intensity.
Nevertheless, features obtained from transformations of the
brain volumes, such as Histograms of Gradient Magnitude and
Orientation [17], 3D Haar-like features [17], deformation fields
[8] or the Normalized Mean Square Error [13], have been
reported in previous studies in order to capture complementary
information. In addition, LBPs were recently used to diagnose
dementia, but not specifically AD, using MRI images [18].

Dimensionality reduction is one additional component com-
mon to most CAD systems. The ground for this is linked, once
again, to the high dimensionality, low sample size problem.
Distinct approaches have been tested regarding this problem,
including methods that study linear combinations of the origi-
nal variables like Principal Component Analysis (PCA) [5],
Linear Discriminant Analysis (LDA) [19] or Non-negative
Matrix Factorization (NMF) [20], and feature selection pro-
cedures, more specifically ranking algorithms that assign a
measure of relevance to each feature in order to select the
most important ones. From the measures of relevance found
in the literature, one can highlight the mutual information
[17], the Pearson correlation coefficient [13], [17], the Fisher
Discriminant Ratio (FDR) [20] and the absolute value of the
two-sample t-test statistic [13]. The main advantage of the
first type of methods (PCA and LDA) is that they are able
to account for combinations of the input features during the
process of dimensionality reduction, while ranking methods
only look at one feature at a time. One selection procedure
based on eye tracking data was proposed in [21], a method
which will be extended in the current work.

The final component of all CAD systems is the learning
machine. Generally, supervised learning machines can be
grouped into two classes: a generative approach, that tries
to learn the probability functions behind the problem and
then classifies a given pattern according to the most probable
output label, and a discriminative approach, that focus directly
on the prediction. The small sample size problem makes
the first approach, based on generative models, to become
unreliable because the estimation of the parameters associated
with the probability functions would not be trustworthy. This
is the reason why most studies used the second approach, i.e.
used discriminative models. The most frequently used learning
algorithm was SVM, which was also exploited in the current
work. Still, experiments have been conducted with different
classifiers such as Adabost [6], which is a Boosting algorithm
that performs classification based on a combination of multiple
simple classifiers, called “weak” classifiers, and even with
Naive Bayes [19] and Maximum Likelihood [18] classifiers,
which are based on generative models. The last two classifiers
relied heavily on the dimensionality reduction stage, so that

the training sample size would become larger than the number
of parameters to estimate.

B. Proposed Approach

The present study is focused on FDG-PET images and
several alternatives for both feature extraction and feature
selection stages were tested. As regards feature extraction,
features of nature different than the original VI were studied,
namely, local variance (LVAR), which captures the contrast
of a small neighborhood of each position of the brain, and
a three-dimensional generalization of Local Binary Patterns
(LBP), which is a texture descriptor. In addition, PET images
were also studied at different scales and resolutions using a
pyramid representation of its scale-space. On the other hand,
five different selection procedures were tested: two of them
are based on Eye Tracking data collected while an expert
physician was examining the same PET scans that constitute
the database herein utilized. The remaining three algorithms
are fully automated and statistically try to find the most
relevant features for the problem. The difference between these
three methods lies in the measure of usefulness of each feature:
one (PBCC) uses correlation coefficients, while the other
two (MIM and mRMR) use mutual information. In addition,
mRMR tries to avoid redundancy between chosen features, as
opposed to MIM. The learning and classification stages were
conducted using the SVM algorithm. Finally, all implemented
classifiers (composed by one feature extraction procedure
followed by one method for feature selection followed by the
SVM algorithm) were used to distinguish the subjects with
AD, MCI and normal controls (Cognitive Normal (CN)) whose
FDG-PET scans were available in the ADNI database.

The remainder of this paper is organized as follows: first,
the extraction of all three types of features will be described
in section II-A, and the selection procedures explored in this
work in section II-B. Then, a brief revision of the SVM
algorithm will be conducted in section II-C and, in section
III, classification results will be presented. Finally, section IV
concludes the paper.

II. METHODS

A. Feature Extraction Alternatives

Most CAD systems developed for the diagnosis of AD
use voxel intensities as features. However, a preprocessing
step is mandatory in order to make brain images of different
individuals and produced by different PET scanners more
similar. All scans that constitute the data herein utilized have
previously been preprocessed including the following steps:
co-registration to their baseline PET scan, orientation align-
ment, resolution standardization, registration to the Talairach
space and intensity normalization, resulting in a 128×128×60
voxel grid with intensities that span the [0, 32700] interval.

1) Scale-Space: A common characteristic of images is that
neighboring pixels are highly correlated and this remains
true for VI features, leading to a considerable amount of
redundant information which can reduce the performance of
any recognition system. The Gaussian pyramid representation
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of the scale-space of brain images is an attempt to reduce
this redundancy by generating equivalent images with lower
resolution. Each layer of a low-pass pyramid is constructed
by the repetition of two steps: smoothing and subsampling. In
this work, the smoothing step was accomplished by convolving
each image with the generating kernel given by w(x, y, z) =
w(x)w(y)w(z) where w(x) = w(y) = w(z) = 1

16 [1 4 6 4 1],
which resembles a Gaussian function and thus gives rise
to the Gaussian pyramid’s name. The subsampling step was
performed with a subsampling factor of two in each direction,
yielding a reduction factor of eight in the number of voxels, in
each additional layer. A more detailed description of the scale-
space expansion can be found in [22]–[24]. On a different note,
features lying outside the brain in each layer of the pyramid
were removed to speed up subsequent processing.

2) Local Variance: The image total variance is one of the
many definitions of contrast, known as RMS contrast [25].
However, to measure local contrast, one needs to consider
the RMS’ local counterpart. Moreover, the 3D nature of the
biomarker that is being used demands the usage of the variance
over a 3D neighborhood, which can be simply defined as the
variance of P equidistant sample points xp = (xp, yp, zp) with
voxel intensities Vp that lie on a sphere with a predefined
radius R and centered at a given point xc = (xc, yc, zc).
Trilinear interpolation [26] is used to compute intensities at
non-integer coordinates. This definition of neighbor set has
one main advantage: it allows for the extraction of features at
different scales by varying the radius R. The operator VARP,R
can therefore be defined as:

VARP,R =

√√√√ 1

P − 1

P∑
p=1

(Vp − µ)
2
, (1)

where µ = 1
P

∑P
p=1 Vp. Hence, if one varies the center xc,

the local contrast of each voxel’s neighborhood can be com-
puted, and all features except the ones located at extracranial
positions can be concatenated to form the feature vector.
Despite the simple formulation of this operator, equidistant
sampling on the sphere has no exact solution for most number
of sampling points, and the general task is known as Fejes
Toth’s problem. Nevertheless, some numerical approximations
are available and can be obtained in [27] and [28].

3) Local Binary Patterns: LBPs [29], [30] were originally
proposed for the analysis of texture in two-dimensional im-
ages. An LBP encodes the texture of the local neighborhood of
a given pixel xc = (xc, yc) with gray value Vc, using P equally
spaced neighboring pixels with coordinates xp = (xp, yp)
and gray values Vp placed on a circle of radius R. Values
at non-integer pixel coordinates are calculated using bilinear
interpolation [31]. The encryption is done by thresholding the
neighbors with the gray value of the central pixel Vc, yielding
a P-dimensional binary vector:

T = [H (V1 − Vc) , . . . ,H (VP − Vc)]T , (2)

where H(·) is the Heaviside or unit step function. Each
pattern T can also be interpreted as a binary number and

therefore can be uniquely identified by the corresponding
value (decimal number). Then, after computing the LBPs for
all pixels in the image by varying the central pixel xc, the
probability of occurrence of each pattern T is estimated using
an histogram. However, since the number of possible patterns
grows exponentially with the number of considered neighbors,
the number of LBP instances will become eventually smaller
than the number of possible patterns, causing problems related
to the stability of the histogram. To alleviate this problem,
two extensions were proposed in [30]: uniform LBPs and
rotation invariance. An LBP is said to be uniform if the binary
vector T contains at most two transitions from 0 to 1 or vice
versa when traversed circularly. This extension is motivated
by the fact that uniform patterns have higher incidence rates
in textured images. On the other hand, rotation invariant LBPs
merge under the same label patterns that can be aligned
after an appropriate rotation. When using both extensions,
only uniform and rotation invariant LBPs are considered in
the histogram, therefore significantly reducing the number of
histogram entries.

A novel approach to full three-dimensional uniform and
rotation invariant LBPs will now be proposed, differing from
other approaches found in the literature [32]–[34] because no
sort of approximation to the original concepts are introduced.
First, consider a 3D equidistant neighbor set similar to the one
used for the Local Variance type of feature. The gray value
of the central voxel xc will be denoted by Vc. Simple LBPs
can therefore be encrypted by the binary vector (2), as in the
2D case. It is when the concepts of uniformity and rotation
invariance are included that the obstacles arise.

On one hand, the original definition of uniformity can not
be generalized to higher dimensions and, therefore, a new
definition was proposed: an LBP is considered to be uniform
if and only if the convex hull H0 of the neighbor points where
H(Vp−Vc) = 0 and the convex hull H1 of the remaining ones
do not intersect. Figure 1 illustrates one example of uniform
and non-uniform patterns. Note this definition can be applied
directly to the original 2D LBPs, leading to the same notion
of uniformity. Now, since the convex hull of a set of points is
known to be a polyhedron, one can represent Hi by a system
of mi linear inequalities, which in matrix form is given by:

Hi : Aix ≤ bi, (3)

where Ai ∈ Rmi×D, x ∈ RD, bi ∈ Rmi and D is the number
of spatial dimensions. The intersection I is, therefore, simply

(a) Uniform (b) Non-Uniform

Fig. 1. Example of uniform and non-uniform LBPs. Green – H0; Blue –
H1.
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given by the following system of m = m0 +m1 inequalities:

I = H0 ∩H1 :

[
A0

A1

]
x ≤

[
b0

b1

]
, (4)

and its feasibility/unfeasibility can be determined using the B-
rule algorithm proposed in [35], which either finds a solution
x to the linear system or it gives a conclusive proof that no
such vector x exists.

On the other hand, rotation invariance was also considered.
In order to decide whether two patterns can be aligned after a
rotation without having to explicitly query against all possible
transformations, the rotation invariant shape descriptor given
by:

SD =
{
||a0,0|| ;

||(a1,−1, a1,0, a1,1)|| ;

· · ·
||(alM ,−lM , . . . , alM ,lM )||

}
, (5)

was used, where the || · || stands for the norm of a vector and
al,m is the complex coefficient associated with the spherical
harmonic Y ml of degree l and order m, resultant from the
decomposition with a maximum degree of expansion lM of a
spherical function f(θ, ϕ) unique for each LBP pattern, and
defined with value one in a small neighborhood of every point
xp for which H(Vp − Vc) = 1 and zero everywhere else, i.e.:

f(θ, ϕ) =

{
H(Vp − Vc) , ||x− xp||2 ≤ ε ∀p
0 , otherwise

(6)

The descriptor SD was inspired in the work of Michael
Kazhdan et al. [36] and, in fact, it can be proved that SD is
equivalent to the descriptor SH proposed by them. In the same
paper, Kazhdan et al. proved the rotation invariance of their
descriptor and, therefore, also the rotation invariance of SD.
On a different note, since for some cardinalities of the neighbor
set, the equidistant sampling is only an approximation, thus
affecting rotation invariance, a small difference between the
SD descriptors was allowed. More precisely, if one thinks of
SD as a vector of dimension lM+1, the same label is assigned
to two LBPs if:

||SDi − SDj ||
max {||SDi||, ||SDj ||}

≤ η, (7)

and if a given pattern lies within this margin with two distinctly
labeled LBPs, then the first is assigned to the group of the
closest LBP. The closeness criterion was defined as in the
left-hand side of the previous inequality. The parameter η was
studied experimentally and fixed at 0.05 in the end.

It is now possible to build the feature vector that will
represent each subject in both 2D and 3D cases. First, a look-
up table that maps each pattern to a uniform and rotation
invariant LBP label is created. In this table, all non-uniform
patterns are tagged with a single label different from the ones
that identify each group of uniform patterns that can be aligned
after a rotation. This step imposes a computational limit on the
number of neighbors in use for the 3D situation, since its time
complexity grows exponentially with P . Afterwards, an LBP

label is computed for each position of the brain image using
the look-up table, and then several histograms are constructed,
each one computed inside a cube of dimension a, which is part
of a mesh that spans the entire brain volume. The usage of
this mesh is important because the brain can be characterized
by several textures at different locations. Also, the tuning
parameter a will allow for the identification of patterns that
are present at different scales. Finally, the feature vector is
constructed concatenating all entries of all histograms, where
each entry is associated with the incidence rate of each uniform
and rotation invariant LBP.

B. Feature Selection Alternatives

Feature extraction procedures described above can produce
a large number of features. It is known that such high
dimensionality combined with a comparatively small sample
size usually leads to a degradation of the classifier’s perfor-
mance [37], phenomena known as the curse of dimensionality.
Broadly speaking, performance degradation occurs because
with more dimensions it becomes easier to overfit, i.e. to
find accidental regularities in the training set, not present in
different unseen data, and therefore leading to poorer general-
ization ability. As a consequence, dimensionality reduction is
an important building block of any CAD system. Formally, the
feature subset selection problem can be posed in the following
way. Let S be the input data set formed by K samples:

S =
{(

x(1), y(1)
)
, . . . ,

(
x(K), y(K)

)}
, (8)

each one consisting of D input variables x(k) =
(
x
(k)
1 , . . . ,

x
(k)
D

)
produced by some feature extraction procedure discussed

in the previous chapter, and one output variable or class label
y(k). The goal of feature selection is to find a subspace of
N features RN , from the D-dimensional observation space
RD, that “optimally” describes the vector of labels. Different
methods arise by changing the optimality criterion.

Some additional notation will now be introduced. In sit-
uations where the input vector x can be interpreted as the
realization of a random variable, the random variable that
models the i-th component of x will be denoted by Xi

and the set of all random variables Xi by X . Similarly,
Y will be the random variable of which each y(k) is a
realization. In addition, the K-dimensional vector containing
all realizations of the i-th feature will be denoted by xi and
the vector containing all K class labels by y. Section II-B4
will use a different notation because medically driven selection
procedures are not based on the training set S.

1) Correlation Coefficients: Correlation coefficients mea-
sure the amount of correlation (linear dependence) between
two variables [38]. Therefore, the utility of a given feature
can be quantified by the correlation coefficient between the i-
th feature Xi and the class label Y . An example is the Pearson
correlation coefficient which can be estimated by:

R(Xi, Y ) =

∑K
k=1

(
x
(k)
i − x̄i

) (
y(k) − ȳ

)√∑K
k=1

(
x
(k)
i − x̄i

)2∑K
k=1

(
y(k) − ȳ

)2 , (9)
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where the bar notation designates the average over all samples.
When the class label is restricted to two values (binary
classification), the coefficient (9) is also known as point
biserial correlation coefficient (PBCC). In linear regression,
R2 represents the fraction of the total variance of one variable
that can be explained by the other using a linear predictor,
and thus, if R(Xi, Y )2 is used as a feature ranking criterion,
features are selected according to their individual goodness
of linear fit. In addition, correlation coefficients range from
-1 to 1, with the extreme values implying a perfect linear
dependency between a given feature and the output variable,
which means that R(Xi, Y )2 ranges from 0 to 1, with values
close to 1 being good indicators for the feature’s relevance. To
choose N features according to this criterion, one only needs
to compute R(Xi;Y )2 for each feature present in the starting
feature set X , sort all correlation coefficients and select the
top N features.

2) Mutual Information: One of the main disadvantages of
correlation coefficients is that they only take into account
linear dependencies between a given feature and the class
label. A better measure of information dependency arises from
information theory and is known as mutual information. Given
two random variables W and Z, their mutual information
is defined as the Kullback-Leibler divergence of the product
of their marginal distributions p(w)p(z) from the random
variables’ joint distribution p(w, z) [39]:

I(W ;Z) =
∑
w∈W

∑
z∈Z

P (w, z) log
P (w, z)

P (w)P (z)
, (10)

where W and Z are the dictionaries containing all possible
events of the random variables W and Z, respectively. It is
worth noting that when w and z are independent from each
other, which means that no information about one variable can
be extracted from the other, p(w, z) becomes p(w)p(z) and
I(W ;Z) is reduced to zero. The current selection procedure,
which will be referred to as Mutual Information Maximization
(MIM) in the remainder of this paper, computes I(Xi;Y ) for
all features in X and selects only the features that achieved the
N highest scores. On a different note, an histogram approach
was used to estimate both marginal and joint density functions
and the definition of mutual information given in Equation (10)
was used to estimate I(Xi;Y ). This approach also demotes
continuous random variables to discrete by partitioning the
space in equal segments, and estimates each probability by
counting the number of elements in each partition.

3) Minimal Redundancy Maximal Relevance: mRMR is an
established algorithm for feature selection originally proposed
by Peng et al. [40]. It is an incremental algorithm, which
means that it selects one feature at a time, and avoids choosing
redundant features even if they have high discriminative power.
Formally, mRMR can be described as follows. Consider two
sets of features: the set Dt containing all the features selected
at time t and the set F t with the remaining ones, such that
the equality {Dt ∪ F t} = X holds. Initially, the set D0 is
empty and the set F 0 contains all features. Then, at each time
step t, mRMR selects from F t the feature that maximizes the

utility function:

J(Xi) = I(Xi;Y )− 1

|Dt|
∑

Xj∈Dt

I(Xi;Xj), (11)

where Xi ∈ F t. The selected feature is removed from the set
F t and added to Dt and the same procedure is repeated until
the desired number of features N is reached. Once again, both
mutual information quantities, I(Xi;Y ) and I(Xi;Xj), can be
computed using (10) and an histogram approach for density
estimation. As can be seen, the utility function that mRMR
maximizes, not only considers the mutual information between
Xi and the class label, as MIM does, but also considers
the redundancy between Xi and all the features already
selected. This property was considered to be very relevant
to the problem at hand due to the high correlation nature
of neighboring voxels. However, mRMR is computationally
more expensive than PBCC and MIM, which proved to be a
considerable disadvantage.

4) Eye Track Driven Selection: Two medically driven se-
lection alternatives were also tested, which were built over
Eye Tracking data recorded while an expert physician was
examining each subject’s PET image in an experiment led by
Bicacro et al. [21]. The final output of Bicacro’s experiment,
and an input to this work, was nk time-dependent sequences
of positions X

(k)
t,s = (x, y, z)

(k)
t,s focused by the physician for

each patient k, with each sequence s restricted to a specific
slice z, together with the total amount of time d(k)t,s spent in
each location: {

{(X, d)t}s
}(k)

, (12)

where t ∈ {1, . . . , T (k)
s }, s ∈ {1, . . . , nk}, k iterates over all

patients, and T (k)
s is the number of gazed points in sequence

s for patient k. Note that the physician can only analyze one
axial cut of the three-dimensional image at a time, reason why
the coordinate z remains constant within each sequence.

The first method (Time-Independent Eye Track Driven Se-
lection (TI-ETDS)) ignores the time sequence through which
the physician examined different regions of the brain. TI-
ETDS uses the probability P (x) of a given voxel x = (x, y, z)
being used by the physician during a diagnosis to randomly
select the desired number of features. Note the change in the
notation: here x denotes a coordinate instead of a feature. The
estimation of the probability function P (x) was accomplished
using Parzen-Windows [41] with a Gaussian kernel and using
every point X(k)

t,s associated with every person in the training
set, regardless of its instant t and sequence s, as a sample with
weight d(k)t,s . It should be stressed that TI-ETDS is, in fact,
equivalent to the method presented in [21] despite having a
different rationalization of the methodology utilized.

The second method (Time-Dependent Eye Track Driven Se-
lection (TD-ETDS)) tries to capture the information contained
in the path taken by the physician’s gaze point, specifically,
by comparing the intensity levels in brain regions examined
at consecutive times. Consider first all pairs of consecutive
voxels analyzed by the physician, where the position of the
first point will be denoted by X and the consecutive one by
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Y , i.e. the dataset that constitutes the input to this procedure
can be stated as follows:

{(X,Y )i}
(k)
, (13)

where i ∈ {1, . . . , nk}, k iterates over all patients and nk is the
number of different consecutive voxels that can be extracted
from (12) for patient k. Since computing all entries of the
probability mass function P (x,y) is not a solution, due to
memory limitations, its estimation and the extraction of the
features used for learning purposes were accomplished in two
steps, based on the conditional decomposition:

P (x,y) = P (x)P (y|x) . (14)

First, the term P (x) was estimated using Parzen-Windows
and using all gazed points X(k)

i , and, then, half of the desired
number of features were sampled. Afterwards, for each sample
x̃ drawn, the second term P (y|x̃) was estimated and the corre-
sponding coupled voxel ỹ subsequently extracted. Finally, for
each pair of brain positions (x̃, ỹ) drawn, two features were
added to the feature vector: V (x̃) and (V (x̃)− V (ỹ))

2.

C. Classification
1) SVM: The final step of any pattern recognition system

is to learn a model from the training instances capable of
correctly classifying future unseen data. The SVM algorithm,
perhaps, the most popular discriminative method for CAD
both inside and outside of the AD research field, has proven
to achieve good generalization results even in almost empty
spaces [42]. Its current form was originally introduced in [43],
[44], and can be briefly described as follows. Given a binary
classification problem, this algorithm seeks the hyperplane that
separates the data with maximum margin, i.e. the hyperplane
that maximizes its distance to the closest training vectors of
both classes, the so called support vectors. When no separation
hyperplane exists, SVM searches for the one that minimizes
classification errors (soft margin). In addition, this algorithm
is able to perform non-linear classification by mapping the
training instances into a typically higher dimensional space
(feature space), where the data is linearly separated. Formally,
the SVM algorithm solves the following optimization problem:

minimize
w,b

1
2w

Tw + C
∑K
k=1 ξk

subject to yk (w · φ(xk) + b) ≥ 1− ξk ∀k
ξk ≥ 0 ∀k

(15)

where w and b are the hyperplane coefficients, xk and yk are
the feature vector and the class label associated with the k-th
training instance, respectively, φ(·) is the mapping function,
ξk is the positive slack variable which accounts for the error
committed in the classification of the k-th sample and C is
a tuning parameter that controls the cost of misclassification.
Usually, the optimization problem (15) is solved by exploiting
its dual formulation, given by:

maximize
α

K∑
k=1

αk −
1

2

K∑
k=1

K∑
l=1

αkαlykylK(xk,xl)

subject to
∑K
k=1 αkyk = 0

0 ≤ αk ≤ C ∀k

(16)

where αk is the Lagrangian coefficient associated with the
k-th restriction of problem (15), and K(·) is the so called
kernel function which computes, for each pair of training
instances, their inner-product in the feature space. Two com-
mon kernels were tested in this study: the linear kernel,
K (xk,xl) = xk · xl, and the RBF kernel, K (xk,xl) =

exp
{
−γ ||xk − xl||2

}
. Finally, after solving the dual problem

for the Lagrangean coefficients αk, the decision function is
given by:

f(x) = sign
(∑K

k=1 αkykK(xk,x) + b
)
, (17)

where the bias b can be found from the constraints of the
primal problem (15) associated with the support vectors, since
they are met as equalities for such training instances.

Herein, the SVM dual problem was solved numerically
using LIBSVM, a publicly available software developed by
Chang and Lin [45] and available at http://www.csie.ntu.edu.
tw/∼cjlin/libsvm.

2) Nested Cross-Validation: Performance assessment of
all proposed classifiers was conducted using the nested CV
procedure originally proposed in [46]. This method partitions
the initial data into k disjoint sets. Then, in each iteration, one
set is left out as the test set, while the others enter in several
CV procedures, one for each parameter setting, from which
the best parameters are chosen, i.e. the parameters whose
corresponding CV achieved the highest accuracy. Afterwards,
all samples except the ones in the test set are used to build a
model with the previously chosen parameters, which is then
applied to the test set. This iteration is repeated k times, so
that all partitions are used as the test set once. Measures
of performance, such as accuracy, sensitivity and specificity,
are then computed based on the true class labels and on the
classification of each sample obtained when it was part of the
test set. As for the inner CV, it also partitions its input data
into k′ disjoint sets and, in each of the k′ iterations, k′ − 1
partitions are used to train a classifier, which is then applied
to the other partition – the validation set. All partitions should
be used as the validation set exactly once.

The nested CV procedure is useful both to provide an
unbiased estimate of the classification accuracy, sensitivity and
specificity of each classifier, and to tune the model parameters,
specifically, the number of features to select (N ) and the SVM
kernel parameters (γ for the RBF kernel and C both for linear
and RBF).

III. RESULTS

A. Neuroimaging Data

Neuroimaging data were retrieved from the ADNI database
[47]. All CN, MCI and AD subjects whose FDG-PET scans
were available were considered, as long as each person’s CDR
score met the following restrictions: 0 for normal controls,
0.5 for MCI patients and 0.5 or higher for AD patients,
resulting in an intermediate dataset composed by 70, 104
and 59 subjects, respectively. The dataset herein utilized was
then built by selecting randomly 59 patients from each group
(except for the AD group where all subjects were retained).
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The number of subjects was reduced in order to reduce the
number of PET scans to be examined by the physician. Table
I summarizes important clinical and demographic information
for each group.

TABLE I
CHARACTERISTICS OF EACH GROUP (MEAN ± STANDARD DEVIATION).

AD MCI CN
Number of patients 59 59 59

Age 78.3 ± 6.6 77.7 ± 6.9 77.4 ± 6.6
Sex (% of Males) 57.6 67.8 64.4

MMSE 19.6 ± 5.1 25.8 ± 3.0 29.2 ± 0.9

B. Experimental design

The goal of the current study is to compare alternative
feature selection algorithms and to evaluate alternative types
of feature. The comparison of all selection procedures was
conducted using the highest resolution layer of the pyramid
representation of the brain image and a linear kernel for the
SVM algorithm. Moreover, an additional dummy algorithm,
which performs the selection in a completely arbitrary manner,
was implemented for comparison purposes. It will allow us
to assess if the selection algorithm is boosting the system’s
performance by choosing the best features first or if those
results only reflect the “average” separation power of the type
of feature in use.

On the other hand, the comparison of all types of feature,
VI, LVAR and LBPs, was performed by testing both linear and
RBF kernels, as well as the three fully automated feature selec-
tion procedures, PBCC, MIM and mRMR. Medically driven
procedures were not considered in this experiment because
they could not be directly used with Local Binary Patterns.
The first five layers of the scale-space were also assessed
independently. To reduce the number of different classifiers
to evaluate (144 if all combinations were considered), the
following approach was undertaken: First, all levels of the
scale-space were tested using MIM and a linear kernel, and
only one was chosen to proceed to the next phase. Then, the
best selection algorithm was sought for each type of feature, in
each classification problem, still using the linear SVM kernel.
Finally, the RBF kernel was tested for the feature extraction
and selection procedures chosen in the previous steps.

In addition, the number of features to select, N , was
allowed to be any value from the set {50, 100, 500, 1000, 2500,
5000, 10000, 25000, 50000} except for mRMR where the max-
imum value of N was chosen (differently for each type of
feature) so that each nested CV run could be completed
in less than a day. More specifically, N was allowed to
assume values up to 500 for the VI and 2D-LBP types of
feature and up to 100 for LVAR and 3D-LBP. The width
of the Parzen-Window kernel function used in both ETDS
algorithms was fixed at 1.5 voxels. As regards LVAR, fea-
tures extracted with (R,P ) ∈ {(2, 98), (4, 390), (6, 870)}
were concatenated to form the feature vector. As for 2D
LBPs, (R,P ) ∈ {(2, 16), (4, 32), (6, 48)} and for 3D-LBPs,
(R,P ) ∈ (2, 24), (4, 24), (6, 24). In addition, features ex-
tracted with a ∈ {9, 13, 17, 21, 25, 29, 33} were considered

both in 2D and 3D LBPs. Finally, a 10×10 nested CV
procedure was implemented to assess the performance of all
classifiers, for the three binary classification problems: AD
vs. CN, MCI vs. CN and AD vs. MCI. The average results
computed after 10 runs of the nested CV procedure was used
in order to diminish statistical fluctuation.

(a) AD v. CN

(b) MCI v. CN

(c) AD v. MCI

Fig. 2. Results obtained for different selection procedures. Error bars
represent the two standard deviation interval.



8

(a) AD v. CN

(b) MCI v. CN

(c) AD v. MCI

Fig. 3. Classification accuracy for different values of N . Error bars represent
the two standard deviation interval.

C. Feature Selection

Figure 2 compares the mean accuracies, sensitivities and
specificities obtained using different selection procedures.
Regarding the AD vs. CN task, medically driven selection
procedures seem to attain slightly better results than fully
automated algorithms with the best marks (90.3% acc., 89.3%
sens. and 91.2% spec.) being achieved by TD-ETDS. Nev-
ertheless, all selection procedures achieved similar accuracies
and one can not conclude with certainty if any of the studied
algorithms is clearly superior or inferior to the others. When
the intermediate state MCI is involved, the performances drop
substantially. MIM achieved the best accuracy both for MCI
vs. CN (77.7%), and for AD vs. MCI (71.7%). On the opposite
side, both algorithms based on eye tracking data performed

worse than all other procedures including random selection.
The power of each selection procedure can be better as-

sessed for small number of features, since as this number
increases, the effect of selection fades out, reason why even
random selection behaved relatively well in all problems. In
order to observe the influence of the number of selected
features in the classification results, one nested CV for each
value of N was performed. Figure 3 shows surprisingly that
TD-ETDS, the method that achieved the best results for AD
vs. CN, is actually the only one performing significantly
worse than random selection for feature spaces of dimension
10000 or smaller. In the other two classifications tasks, MCI
vs. CN and AD vs. MCI, both medically driven procedures
had difficulties in choosing the best VI features, performing
consistently worse than most selection algorithms for most
values of N . On a different note, mRMR outperformed all
other methods for corresponding number of features, but since
it could only be evaluated up to 500 features, its marks were
always exceeded in higher dimensional spaces. This is consis-
tent with its theoretical advantage over PBCC and MIM. In
fact, since mRMR accounts for redundancy between selected
features, this algorithm certainly joins a higher amount of
information in a feature set of a given size.

D. Feature Extraction

The second goal of the present work was to assess alter-
native extraction techniques. The evaluation of each type of
feature was performed step by step as explained above, and
the results of each step are listed in Tables II, III and IV.

Table II compares the performances obtained for different
levels of the scale-space, using MIM and a linear kernel. The
system’s performance was not harmed significantly by the
decrease in the image resolution resultant from the level l = 1
of the scale-space. In fact, for the MCI vs. CN task, the overall
result was actually improved, achieving 79.4% acc., and even
for the other two classification tasks, the second layer (l = 1)
scored always very close to the first one, achieving the same
accuracy for AD vs. CN, and -0.6% for AD vs. MCI. Bearing
this in mind, and also that the number of features in the second
layer is 8 times smaller than in the first one, which represents
a significant speed up in the learning phase of the CAD tool,
level l = 1 was chosen to represent the VI features in the
remaining of this work.

Table III compares the performances obtained for different
selection procedures, using a linear kernel. MIM was most
frequently the best algorithm (ranking first in 7 out of 12
problems), followed by PBCC which ranked first in 4 compar-
isons, and finally mRMR which got the best results in just one
problem. In fact, PBCC and MIM achieved very similar results
in most classifications, contrarily to mRMR which performed
significantly poorer in several occasions. It should be stressed,
however, that the number of features used in this algorithm had
to be severely reduced in order to be able to produce results
in acceptable time.

Finally, Table IV compares the performances obtained for
different kernel types, using the settings chosen so far, i.e. the
layer l = 1 of the scale-space when the VI features are
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TABLE II
CLASSIFICATION ACCURACY USING DIFFERENT LAYERS OF THE

SCALE-SPACE. [%]

Level 0 Level 1 Level 2 Level 3 Level 4
AD vs. CN 87.5 87.5 85.4 84.2 74.6

MCI vs. CN 75.5 79.4 74.7 71.3 62.1
AD vs. MCI 71.9 71.3 70.8 67.5 66.5

TABLE III
CLASSIFICATION ACCURACY USING DIFFERENT SELECTION TECHNIQUES.

[%]

PBCC MIM mRMR

AD vs. CN

VI (l = 1) 86.7 87.5 88.0
LVAR 84.5 86.2 85.1

2D-LBP 88.9 89.2 87.0
3D-LBP 91.4 90.2 85.8

MCI vs. CN

VI (l = 1) 76.9 79.4 72.6
LVAR 71.9 73.4 67.6

2D-LBP 71.3 68.4 60.1
3D-LBP 74.7 69.8 58.5

AD vs. MCI

VI (l = 1) 72.7 71.3 71.5
LVAR 72.0 73.4 69.9

2D-LBP 68.3 68.7 63.5
3D-LBP 64.7 67.6 55.3

TABLE IV
CLASSIFICATION ACCURACY USING DIFFERENT KERNEL TYPES. [%]

Linear RBF

AD vs. CN

VI (l = 1) mRMR 88.0 87.2
LVAR MIM 86.2 85.5

2D-LBP MIM 89.2 89.0
3D-LBP PBCC 91.4 89.7

MCI vs. CN

VI (l = 1) MIM 79.4 77.3
LVAR MIM 73.4 73.0

2D-LBP PBCC 71.3 71.9
3D-LBP PBCC 74.7 73.8

AD vs. MCI

VI (l = 1) PBCC 72.7 71.1
LVAR MIM 73.4 72.7

2D-LBP MIM 68.7 67.9
3D-LBP MIM 67.6 65.8

involved and the best feature selection procedures found in the
previous step. The usage of the RBF kernel did not improve
significantly the performance of any type of feature, achieving
similar or worse accuracies in all settings, despite the learning
stage being much more time consuming due to the number of
parameters to optimize.

To conclude this section, the best results achieved in the
present study for each classification task are marked in Table
IV in boldface type.

IV. CONCLUSION

The current work studied several approaches to the auto-
matic classification of AD based on FDG-PET images.

The curse of dimensionality was tackled by significantly
reducing the dimensionality of the feature vectors, while trying
to retain as much information as possible. The innovative
approach TD-ETDS, which is an original extension to TI-
ETDS, was capable of mimicking an expert physician not
only in the choice of the most important voxels but also in
the comparison of different regions of the brain. TD-ETDS
achieved the best results in the AD vs. CN classification,
but when the MCI state was involved it achieved worse

performances even when compared to random selection. The
lower performance of both ETDS techniques in problems
involving the MCI state may be related to the fact that eye
tracking data was recorded while the physician was performing
multi-class classification (CN vs. MCI vs. AD), while here
we are focused on dichotomous classification problems. On a
different note, when features other than VI were being used,
MIM was often the best method, confirming in practice its
theoretical advantage over PBCC. The usage of mRMR, which
had never been considered for the CAD of AD despite being a
recognized selection procedure, led to inferior performances in
almost all settings. However, that was probably only motivated
by the low number of features that this algorithm can select
in an acceptable amount of time, since it was shown that
mRMR was consistently better for equal number of features.
This fact indicates that better performances might be achieved
if it was possible to consider connections between features
at lower computational costs. One possibility is to abandon
the paradigm of feature selection and consider algorithms that
project the data onto low dimensional spaces, such as LDA or
PCA.

The second objective of the current study was to evaluate
the use of features of different nature from voxel intensities.
The performances achieved in all classification tasks were
improved by some of the proposed transformations. First, this
study showed that the loss incurred by reducing the resolution
of the original input images was negligible for a subsampling
factor of 8, and it even enhanced the performance for the MCI
vs. CN classification, which is highly significant considering
the substantial decrease in the starting number of features and
the corresponding computational gain. As regards the LBP
type of feature, a novel approach to the extension of the
original extraction algorithm to three-dimensional data was
proposed. This extension differentiates itself from others found
in the literature by not introducing any approximation to the
original concepts. In addition, 3D-LBPs achieved good overall
performances, improving the results of its two-dimensional
counterpart in the AD vs. CN and MCI vs. CN tasks.
LVAR also proved to hold discriminative information about
all problems, attaining the best marks for the AD vs. MCI
classification task.

Finally, the present work also used the robustness of the
SVM algorithm to almost empty spaces to alleviate the curse
of dimensionality. In fact, SVM was vital to achieve very good
performances using feature vectors of dimensionality as high
as 50000 and only 118 training instances. A natural follow-
up work would be to merge the three dichotomous problems
and perform multi-class classification or even to include scans
from patients suffering from other types of dementia in order
to come closer to a real life environment.
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