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A.1 Datasets

In this work we adopt several datasets previously used in visual recognition

task such as image annotation, image retrieval, scene classification etc. In addition

to the existing datasets, we introduce three new datasets — two datasets for the

task of image retrieval and one for cross-modal retrieval. Next, we briefly discuss

the salient properties of these datasets.

A.1.1 Natural Scene Categories (N8, N13, N15)

The Natural Scene Categories, is a collection of three datasets, viz. “La-

belMe Natural Scenes”, “Thirteen Natural Scenes” and “Fifteen Natural Scenes”,

where “LabelMe Natural Scenes” is a subset of “Thirteen Natural Scenes” which

itself is a subset of the “Fifteen Natural Scenes” dataset.

LabelMe Natural Scenes (N8)

“LabelMe Natural Scenes” dataset, henceforth referred to as “Natural8”

(N8), consists of 2688 images classified into eight classes viz “Coast”, “Forest”,

“Highway”, “Inside City”, “Mountain”, “Open Country”, “Street”, “Tall Build-

ing”. This dataset was first proposed in [104] and has been later used in several

scene classification literatures [114, 17, 80, 67] etc. Although the images are avail-

able with color, in this work as is commonly done we convert all the images to gray

scale. The average size of each image is 250 × 250 pixels. N8 dataset is primarily

used for scene classification task, where 100 images per class serve as the training

set and the rest of the images as the test set. A.1 provides a detailed description

of various classes.

Thirteen Natural Scenes (N13)

“Thirteen Natural Scenes” dataset here referred to as “Natural13 (N13)”,

was first proposed in [77] where five more scene categories, viz. “Bedroom”, “Sub-

urb”, “Kitchen”, “Livingroom”, “Office”, were added to the N8 dataset. N13

dataset has been used by several authors to evaluate scene classification systems
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Table A.1: Summary of the Natural Scene datasets.

Natural8 (N8)

Category Training set Test set Total

Coast 100 260 360

Forest 100 228 328

Highway 100 160 260

Inside City 100 208 308

Mountain 100 274 374

Open Country 100 310 410

Street 100 192 292

Tall Building 100 256 356

total 800 1888 2688

Natural13 (N13) Additional Classes

Bedroom 100 116 216

Suburb 100 141 241

Kitchen 100 110 210

Livingroom 100 189 289

Office 100 115 215

total 1300 2559 3859

Natural15 (N15) Additional Classes

Store 100 215 315

Industrial 100 211 311

total 1500 2985 4485

[17, 114, 74, 6, 65]. A.1 provides a detailed description of various additional classes

of the N13 dataset.
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Fifteen Natural Scenes (N15)

“Fifteen Natural Scenes” dataset, here referred to as “Natural15” (N15) is

currently one of the most popular dataset used for the evaluation of scene recog-

nition systems. N15 dataset was first proposed in [74], where two more scene

categories, viz. “Store”, “Industrial” were added to the N13 dataset. Thus, N15

dataset consists of fifteen classes of natural scenes where each class contains 200

to 400 images, of average size 270×250 pixels. In all the experiments using N15

dataset, 100 images per scene are used to learn the model, the remaining being

used as test set. A.1 provides a detailed description of the additional classes in the

N15 dataset.

A.1.2 UIUC Sports Dataset (S8)

UIUC Sports dataset, henceforth refered to as ”Sports8” (S8), consists of

1579 images classified into eight sports categories, viz. {“badminton”, “bocce”,

“croquet”, “polo”, “rock climbing”, “rowing”, “sailing”, “snowboarding”}. It was

first proposed in [79] for Latent Dirichlet Allocation based (LDA) based classifica-

tion, and subsequently used by [167] to evaluate supervised-LDA. Each category

has 137 to 250 images with an average size of over 1000 × 1000 pixels. For our

experiments, the images were resized to a maximum of 256 pixels along the larger

border. In all, there are 1579 images. In this work S8 dataset is used to evaluate

scene classification systems. As in [79], 70 images per scene are used to learn the

model, and 60 images are used as test set. A.2 provides a detailed description of

all the classes in the S8 dataset.

A.1.3 Corel Image Collection (C371, C50, C43, C15)

The Corel Image Collection consists of the Corel Stock Photo CDs. Each

CD includes 100 images of a common topic. We construct four different datasets

from this collection.
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Table A.2: Summary of the UIUC Sports dataset.

Category Training set Test set Total

Coast 70 60 200

Forest 70 60 137

Highway 70 60 236

Inside City 70 60 182

Mountain 70 60 194

Open Country 70 60 250

Street 70 60 190

Tall Building 70 60 190

total 560 480 1579

Corel371 (C371)

The first dataset is “Corel371” (C371) which was first proposed in [35] for

the task of automatic image annotation. C371 consists of 5, 000 images from 50

Corel Stock Photo CDs. Each image is further labeled with 1-5 semantic concepts.

Overall there are 371 concepts in the vocabulary. C371 has since then been used

to evaluate several other image annotation systems [41, 72, 21, 22] etc where 4500

images are used to train the system and the rest 500 for evaluation. A.3 provides

a list of the annotation available for the C371 dataset along with the number of

training and testing images per concept (in brackets). All images in this collection

are available with color information. In this work, all the images from the Corel

Collection are normalized to size 181× 117 or 117× 181 and converted from RGB

to the YBR color space.

Table A.3: Summary of the C371 dataset.

water (1005,116); sky (883,105); tree (854,93); people (670,74); grass (446,51);

buildings (408,54); mountain (307,38); flowers (269,27); snow (267,31); clouds (254,
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Table A.3: (continued)

26); rocks (228,22); stone (212,20); street (203,26); plane (199,25); bear (198,22);

field (198,17); sand (184,19); birds (179,17); beach (177,18); boats (155,15);

jet (147,19); leaf (136,12); cars (134,17); plants (129,15); house (124,19);

bridge (123,15); polar (122,13); valley (122,11); garden (117,10); hills (113,18);

close-up (112,10); ruins (107,12); statue (106,11); horses (103,12); tracks (103,11);

sun (101,10); ice (99,12); wall (98,14); ocean (96,9); cat (96,11);

temple (94,10); train (94,11); tiger (91,10); coral (89,9); scotland (89,11);

swimmers (85,8); coast (84,5); window (79,8); branch (78,2); pool (77,11);

foals (77,9); sunset (76,7); sculpture (76,10); frost (74,7); head (71,2);

forest (71,11); fox (71,9); nest (71,7); mare (69,9); city (67,10);

railroad (63,8); ground (60,4); horizon (59,4); shops (59,4); petals (59,4);

arch (57,4); reefs (56,5); palace (56,4); reflection (55,9); park (55,2);

desert (55,11); skyline (53,6); locomotive (53,9); shore (51,8); castle (49,6);

pillar (49,9); river (48,4); town (48,9); road (47,4); deer (47,4);

waves (45,4); smoke (44,10); sea (43,2); church (42,6); market (40,2);

tower (40,7); coyote (37,2); light (37,6); courtyard (37,2); sign (37,2);

zebra (37,4); bush (36,1); fence (35,2); village (35,7); door (35,2);

landscape (35,4); pyramid (35,3); black (34,2); roofs (34,2); tundra (33,9);

display (32,1); shadows (32,3); elk (32,6); island (31,2); flight (30,1);

grizzly (30,7); harbor (30,4); rodent (30,4); runway (29,1); stems (29,2);

palm (28,3); tulip (28,3); antlers (28,4); dunes (28,1); man (28,1);

woman (28,1); turn (28,3); fish (27,6); restaurant (27,4); formula (27,4);

buddha (26,1); white-tailed (26,2); kauai (26,4); hut (25,6); herd (25,4);

formation (24,2); wood (24,4); food (24,2); museum (23,4); indian (22,3);

oahu (22,1); ships (21,3); flag (21,2); prop (21,1); hillside (21,3);

farms (21,2); bengal (21,6); cliff (21,0); hats (21,2); lizard (21,1);

prototype (21,4); gate (20,2); shrine (20,0); frozen (20,4); face (19,2);

log (18,2); arctic (18,3); bulls (18,5); caribou (18,4); moose (18,1);

canyon (18,3); baby (18,1); buddhist (18,3); straightaway (18,0); tables (17,2);

costume (17,3); hotel (17,2); fountain (17,1); night (17,2); tortoise (17,0);

path (16,1); stairs (16,2); figures (16,0); lawn (16,2); giant (16,0);
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Table A.3: (continued)

giraffe (16,1); steel (16,0); hawaii (16,3); land (15,1); meadow (15,3);

cubs (15,1); autumn (15,0); umbrella (15,0); crystals (15,1); booby (15,5);

seals (15,0); maui (15,2); lake (14,1); windmills (14,2); monastery (14,2);

facade (14,0); mule (14,2); tusks (14,1); sphinx (14,1); anemone (13,1);

clothes (13,1); writing (13,0); ceremony (13,1); cottage (13,3); elephant (13,3);

monks (13,3); iguana (13,3); marine (13,3); reptile (13,1); f-16 (12,1);

tails (12,1); pagoda (12,0); fruit (12,2); poppies (12,0); pots (12,3);

albatross (12,1); girl (12,3); cow (11,4); guard (11,0); athlete (11,3);

steps (11,0); horns (11,1); fly (11,1); prayer (11,0); shrubs (10,3);

post (10,2); crab (10,1); entrance (10,1); column (10,2); relief (10,1);

penguin (10,0); row (10,0); antelope (10,2); bay (9,0); fan (9,1);

sunrise (9,1); vegetation (9,1); sailboats (9,0); chapel (9,0); paintings (9,0);

plaza (9,1); pond (9,0); vines (9,1); bench (9,0); waterfalls (9,0);

slope (9,1); goat (9,2); wolf (9,0); dog (8,0); stream (8,0);

lion (8,3); barn (8,2); glass (8,1); architecture (8,1); fog (8,0);

stick (8,0); wings (8,0); blooms (8,1); mosque (8,1); squirrel (8,2);

rainbow (7,0); dress (7,1); run (7,0); sheep (7,2); detail (7,1);

room (7,0); cathedral (7,2); monument (7,3); canal (7,1); interior (7,3);

mist (7,2); vineyard (7,1); lynx (7,1); african (7,1); pups (7,0);

carvings (6,0); kit (6,1); den (6,1); balcony (6,1); art (6,2);

decoration (6,2); chairs (6,0); crowd (6,0); cheese (6,0); silhouette (6,1);

terrace (6,1); cactus (6,2); outside (6,1); basket (5,1); drum (5,0);

winter (5,0); rockface (5,0); pair (5,0); nets (5,1); pattern (5,0);

blossoms (5,0); store (5,1); needles (5,1); designs (5,0); lily (5,0);

lighthouse (5,2); truck (5,1); marsh (5,1); porcupine (5,1); range (5,0);

pole (5,0); dance (5,1); plain (4,0); peaks (4,1); helicopter (4,0);

fall (4,0); sponges (4,0); star (4,0); cave (4,2); vegetables (4,0);

rose (4,0); dock (4,1); pottery (4,0); fawn (4,0); chrysanthemums (4,0);

trunk (4,2); eagle (4,0); whales (4,1); rabbit (4,0); animals (4,0);

shell (3,0); storm (3,0); crafts (3,1); festival (3,1); mural (3,0);

butterfly (3,1); carpet (3,0); floor (3,0); vendor (3,1); parade (3,0);
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Table A.3: (continued)

doorway (3,1); texture (3,0); dust (3,0); pack (3,0); dall (3,0);

trail (3,0); shirt (3,0); pebbles (3,0); snake (3,1); moon (2,0);

cafe (2,1); angelfish (2,0); perch (2,0); sidewalk (2,2); spider (2,0);

tent (2,0); clearing (2,0); hands (2,0); crops (2,0); vehicle (2,1);

rice (2,0); tomb (2,0); calf (2,1); school (2,0); boeing (1,0);

diver (1,0); sails (1,1); model (1,0); railing (1,0); ladder (1,0);

rapids (1,0); military (1,0); mushrooms (1,0); hawk (1,0); orchid (1,1);

saguaro (1,0); mast (1,0); pepper (1,0); insect (1,0); glacier (1,0);

harvest (1,0); shade (1,0); ceiling (1,0); furniture (1,0); lichen (1,0);

remains (1,0); leopard (1,0); jeep (1,0); cougar (1,1); canoe (1,0);

race (1,0); grouper (0,1); moss (0,1); aerial (0,1);

Corel50,Corel43 (C50,C43)

We also use the image from C371 dataset to construct two more dataset,

“Corel50” (C50) and “Corel43” (C43) for the task of scene classification task,

relying on the CD labels for groundtruth instead of the image annotations. C50

contains 50 scene classes, each corresponding to one CD in the collection. For

each CD, 90 images are used to learn class models and the remaining for testing.

It has been argued that CD labels lead to an easy classification problem [173] as

there is high variability between images from different CDs and high similarity

among those from the same CD. To address these concerns, we construct another

dataset from this collection, C43 that uses a set of manual annotations (disjoint

from the CD labels) as ground truth. 43 semantic concepts are chosen from the

set of annotations of [35] (those with a minimum of 100 annotated images) and

100 images are randomly selected per concept. Since an image can be labeled with

more than one concept, this results in a total of 3102 images. Of these, 2766 are

randomly selected to create a test set with approximately 90 images per label, and

the remainder are used for testing. A correct classification is declared whenever

the top predicted label matches any of the groundtruth labels.
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Corel15 (C15)

Corel15 (C15) consists of 1, 500 images from another fifteen previously un-

used Corel Stock Photo CDs, viz. “Adventure Sailing”, “Autumn”, “Barnyard An-

imals”, “Caves”, “Cities of Italy”, “Commercial Construction”, “Food”, “Greece”,

“Helicopters”, “Military Vehicles”, “New Zealand”, “People of World”, “Residen-

tial Interiors”, “Sacred Places”, “Soldier”. Once again, the CD themes (non-

overlapping with those of C50 served as the ground truth. This dataset is used for

the evaluation of image retrieval systems where 1, 200 images serve as the retrieval

set and the remaining 300 images as the query set.

A.1.4 Flickr Images (F18)

To address some criticism that ‘Corel is easy’ [98, 172], we collected a sec-

ond database from the online photo sharing website www.flickr.com. The images

in this database were extracted by placing queries on the flickr search engine, and

manually pruning images that appeared irrelevant to the specified queries. Note

that the judgments of relevance did not take into account how well a content-based

retrieval system would perform on the images, simply whether they appeared to be

search errors (by flickr) or not. The images are shot by flickr users, and hence differ

from the Corel Stock photos, which have been shot professionally. This database,

“Flickr18” (F18), contains 1800 images divided into 18 classes viz. “Automo-

biles”, “Building and Landscapes”, “FacialCloseUp”, “Flora”, “FlowersCloseup”,

“Food and Fruits”, “Frozen”, “Hills and Valley”, “Horsesl and Foal”, “JetPlanes”,

“Sand”, “Sculpture and Statues”, “SeaandWaves”, “Solar”, “Township”, “Train”,

“Underwater”, “Waterfun”, according to the manual annotations provided by the

online users. F18 is again used for evaluating image retrieval systems where 20%

of randomly selected images served as the query set and the remaining 80% as the

retrieval set.
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Table A.4: Summary of the TVGraz dataset.

Category Training set Test set Total

Brain 109 47 156

Butterfly 195 51 246

Cactus 137 37 174

Deer 223 51 274

Dice 169 50 219

Dolphin 163 59 222

Elephant 120 54 174

Frog 215 67 282

Harp 131 42 173

Pram 96 42 138

total 1558 500 2058

A.1.5 TVGraz

The TVGraz dataset is a collection of web-pages compiled by Khan et

al. [66]. The Google Image search engine was used to retrieve 1, 000 web-pages

for each of ten categories from the Caltech-256 [52] dataset. The results were fil-

tered into a set of 2, 592 positive web-pages, containing both text and image data,

for which the image belonged to the query category. Due to copyright issues, the

TVGraz database is stored as a list of URLs, and must be recompiled by each

new user. We collected 2, 058 image-text pairs, since some URLs were defunct

and we discarded web-pages that did not contain at least 10 words and one image.

The median text length, per web-page, is 289 words. A random split was used to

produce 1, 558 training and 500 test documents, as summarized in A.4.

A.1.6 Wikipedia

A novel dataset was assembled from the “Wikipedia featured articles”, a

continually updated collection of Wikipedia articles, which contained 2, 669 entries
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Table A.5: Summary of the Wikipedia dataset.

Category Training set Test set Total

Art & architecture 138 34 172

Biology 272 88 360

Geography & places 244 96 340

History 248 85 333

Literature & theatre 202 65 267

Media 178 58 236

Music 186 51 237

Royalty & nobility 144 41 185

Sport & recreation 214 71 285

Warfare 347 104 451

total 2173 693 2866

when the data was collected, in October 2009. These articles, which are selected

and reviewed for style and quality by Wikipedia’s editors, are often accompanied

by one or more pictures from the Wikimedia Commons, supplying a text-image

pairing. The Wikipedia featured articles are divided into 29 categories, but some

contain very few entries. We considered only articles from the 10 most populated

categories, which were used as a semantic vocabulary. Since the featured articles

tend to have multiple images and span multiple topics, each article was split into

sections, based on its section headings. Each image was assigned to the section

in which it was placed by the author(s). This produced a total of 7, 114 sections,

which are internally more coherent and usually contain a single picture. The

dataset was then pruned, by keeping only sections with exactly one image and at

least 70 words. The final corpus contains a total of 2, 866 documents. The median

text length is 200 words. A random split was used to produce a training set of

2, 173 documents and a test set of 693 documents, as summarized in A.5.



Appendix B

Generalized Expectation

maximization (GEM)

The parameters Λw = {βwk ,αw
k } of the contextual class models of (6.1)

are learned using GEM. This is an extension of the well known EM algorithm,

applicable when the M-step of the latter is intractable. It consists of two steps. The

E-Step is identical to that of EM, computing the expected values of the component

probability mass βk. The generalized M-step estimates the parameters αk. Rather

than solving for the parameters of maximum likelihood, it simply produces an

estimate of higher likelihood than that available in the previous iteration. This

is known to suffice for convergence of the overall EM procedure [30]. We resort

to the Newton-Raphson algorithm to obtain these improved parameter estimates,

as suggested in [95] for single component Dirichlet distributions. Omitting the

dependence on the concept index w for brevity, the algorithm iterates between two

steps,

E-step: compute

hdk =
Dir(πd;αk)βk
∑

l βlDir(πd;αl)
(B.1)
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M-step: set

(βk)
new =

Nk

N
, where N =

∑

dk

hdk, Nk =
∑

d

hdk (B.2)

(αk)
new = (αk)

old + Hk−1
gk (B.3)

where gki = Nk(Ψ(
L
∑

p=1

αp) − Ψ(αi)) +
∑

d

hdk log πid (B.4)

and Hk
ii = Nk(Ψ

′(

L
∑

p=1

αp) − Ψ′(αi)) (B.5)

Hk
ij = Nk(Ψ

′(

L
∑

p=1

αp)), (B.6)

Ψ and Ψ′ are the Digamma and Trigamma functions [95].
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Computation of Image-SMNs

Given N patch-based SMNs, π(n), the Image-SMN π∗ is

π∗ = arg min
π

1

N

N
∑

n=1

KL(π||π(n))

= arg min
π

1

N

N
∑

n=1

L
∑

i=1

πi log
πi

π
(n)
i

= arg min
π

1

N

N
∑

n=1

L
∑

i=1

[

πi log πi − πi log π
(n)
i

]

subject to
∑L

i=1 πi = 1. This has Lagrangian

L(π, λ) =

L
∑

i=1

πi log πi −
1

N

L
∑

i=1

πi

N
∑

n=1

log π
(n)
i +

λ

N
(1 −

L
∑

i=1

πi).

Setting derivatives with respect to πi to zero leads to

1 + log πi −
1

N

N
∑

n=1

log π
(n)
i − λ

N
= 0, (C.1)

or πi = exp
(

λ̂+ < log πi >
)

(C.2)

where < log πi >= 1
N

∑N
n=1 log π

(n)
i and λ̂ = λ

N
− 1. Summing over i and using

the constraint
∑

i πi = 1,

1 = exp(λ̂)

L
∑

i=1

exp < log πi > (C.3)

exp(λ̂) =
1

∑L
i=1 exp < log πi >

. (C.4)
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Substituting (C.4) in (C.2),

π∗
i =

exp < log πi >
∑L

i=1 exp < log πi >
(C.5)

=
exp 1

N

∑

n log π
(n)
i

∑

i exp 1
N

∑

n log π
(n)
i

. (C.6)
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Variational Approximation

Variational methods approximate the posterior P (π, w1:N |x1:N) by a mean-

field variational distribution q(π, w1:N), indexed by free variational parameters,

within some class of tractable probability distributions F . These distributions

usually assume independent factors,

q(π, w1:N) = q(π; γ)
∏

n

q(wn; φn) (D.1)

where q(y) and q(zi) are categorical models, and q(π) a Dirichlet distribution.

Given an observation x1:N , the optimal variational approximation minimizes the

Kullback-Leibler (KL) divergence between the two posteriors

q∗ = arg min
q∈F

KL(q(π, w1:N)||P (π, w1:N |x1:N)) (D.2)

= L(q(π, w1:N)) + logP (x1:N) (D.3)

where,

L(q(π, w1:N)) = Eq[log q(π, w1:N)] − Eq[logP (π, w1:N , x1:N)]. (D.4)

Since the data likelihood P (x1:N) is constant for an observed image, the optimiza-

tion problem is identical to

q∗(π, w1:N) = arg min
q∈F

L(q(π, w1:N)), (D.5)
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From Appendix A.3 of [14], the update rule for coordinate descent of the variational

parameters is

γ∗i =
∑

n

φni + αi (D.6)

φ∗
ni ∝ PX|W (xn|wn = i) eψ(γi)−ψ(

P

j γj) (D.7)

such that
∑

i φni = 1 and, where αi are the parameters of the prior class distri-

bution P (π; α) and ψ is the Digamma function [95]. Once the parameters of the

variational distribution are obtained, the SMN for an image can be computed as,

π∗ = arg max
π

q(π; γ) (D.8)

= arg max
π

log q(π; γ) (D.9)

= arg max
π

L
∑

j

(γj − 1) log πj (D.10)

such that,
∑

j

πj = 1 (D.11)

Using the Lagrange multiplier, λ, we get

J(π, λ) =

L
∑

j

(γj − 1) log πj + λ(1 −
L
∑

j

πj) (D.12)

Taking partial derivatives with respect to, πj and λ and setting them to zero we

get,

∂J

∂πj
=

(γj − 1)

πj
− λ = 0, ∀j (D.13)

∂J

∂λ
= 1 −

L
∑

j

πj = 0 (D.14)

From (D.13) and (D.14) we get,

πj =
γi − 1

∑

j γj − L
(D.15)
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Parameter Estimation in cLDA

The parameters (η,α1:C ,Λ1:K) of cLDA are learned using variational Ex-

pectation Maximization (EM) algorithm. This iterates between:

Variational E-Step consists of approximating the posterior P (πd, zd1:N |Id, yd)
for an image Id = {wd1, . . . , wdN} using the variational distribution,

q(πd, zd1:N) = q(πd; γd)
∏

n

q(zdn; φ
d
n) (E.1)

Similar to the variational inference of LDA (see Appendix D), the varia-

tional parameters can be computed using the update rules,

γd∗k =
∑

n

φdnk + αydk (E.2)

φd∗nk ∝ Λkwd
n

exp
[

ψ(γdk)
]

(E.3)

where,
∑

k φ
d
nk = 1. Note that in cLDA, since each class is associated with a

separate prior over the topic simplex, (E.2) differs from (D.6), in that α parameters

are class specific.
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M-Step consists of computing the values of the parameters (α1:C ,Λ1:K), where

αy is obtained by maximizing,

α∗
y = arg max

αy

−
∑

d

δ(yd, y) logB(αy)

+
∑

d

∑

k

δ(yd, y)(αydk − 1)Eq[log πdk] (E.4)

where,

Eq[log πdk] = ψ(
∑

l

γdl ) − ψ(γdk) (E.5)

B(αy) =

∏

k(Γ(αyk)

Γ(
∑

k αyk)
(E.6)

and Γ() is the Gamma function. The above optimization can be carried out using

the method of Newton-Raphson gradient ascent as detailed in [95].

Λk is obtained by maximizing,

Λ∗
kv = arg max

Λk

∑

d

∑

n

δ(wdn, v)φ
d
nk log Λkv (E.7)

such that
∑|V|

v=1 Λkv = 1, using the method of Lagrange multipliers which results

in the closed form update,

Λkv ∝
∑

d

∑

n

δ(wdn, v)φ
d
nk (E.8)

where, proportionality symbols means that Λk is normalized to sum to 1. Note

that its common to assume a uniform class prior and we assume ηy = 1
C
, ∀y ∈ Y.



Appendix F

Parameter Estimation in

topic-supervised LDA models

In this section, we discuss the parameter estimation for ts-cLDA. The pa-

rameter for other topic-supervised models can be computed using a similar ap-

proach. Topic supervision decouples cLDA learning into two steps: 1) learning of

the parameters Λ1:K of the topic-conditional distributions, and 2) learning of the

parameters α1:C of the class-conditional distributions1.

F.1 Learning Topic Conditional Distributions

As discussed in Section 7.5, since the topics are defined over the class vo-

cabulary T = V, in absence of the individual topic labels zdn for the visual words

wdn during learning, we assume all topic labels are equal to the image class yd, i.e.

zdn = yd ∀n, d. Although, this is not true in reality, such an approximation has

been shown to be effective both through the design of image labeling systems [21]

and through theoretical connections to multiple instance learning. Infact, this is

an implicit assumption in learning the parameters of the flat model. Thus, the ML

estimates of Λk can be obtained from

Λ∗
kv = arg max

Λk

∑

d

∑

n

δ(yd, k)δ(wd
n, v) log Λkv (F.1)

1Note that η is again assumed to follow a uniform distribution
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such that
∑|V|

v=1 Λkv = 1. Using the method of Lagrange multipliers, the solution

to the optimization problem is given by,

Λkv =

∑

d

∑

n δ(y
d, k)δ(wd

n, v)
∑

j

∑

d

∑

n δ(y
d, j)δ(wd

n, v)
(F.2)

F.2 Learning Class Conditional Distribution

Once the topic-conditional distributions are learned, the parameters αc of

the class-conditional distributions can be learned by the maximizing the likelihood

of the data, P (yd, wd1:N) using the standard variational EM algorithm, this approach

iterates between two steps:

Variational E-Step consists of computing,

γd∗k =
∑

n

φdnk + αydk (F.3)

φd∗nk ∝ Λkwd
n

exp
[

ψ(γdk)
]

(F.4)

where, proportionality symbols means that φdn is normalized to sum to 1.

M-Step consists of computing the values of the parameters α1:C (note that Λ1:K

is already computed) similar to (E.4).



Appendix G

Implementation Details of the

various systems

We conclude this thesis by discussing some implementation details of various

recognition systems proposed in this work. This discussion is intended mostly for

those interested in replication portions or the entirety of the work described in

the thesis. Although, many of the details have been mentioned in the previous

chapters, we believe that it is useful to present a cohesive summary of the most

important points.

G.1 Image Representation

Given a database of images, images are represented either using DCT or

SIFT descriptors, where both BoF and BoW models are employed.

G.1.1 SIFT Features

To compute SIFT, image patches are selected either 1) by interest point

detection, referred to as SIFT-INTR, or 2) on a dense regular grid, referred to as

SIFT-GRID. For SIFT-INTR, interest points computed using three operators —

Harris-Laplace, Laplace-of-Gaussian, and Difference-of-Gaussian — which are then

merged. These measures also provide scale information, which is used in the com-
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putation of SIFT features. For SIFT-GRID, feature points are sampled every 8 pix-

els and the descriptor is computed over a 16×16 neighborhood around each feature

point. Both interest points and SIFT features are computed with the implementa-

tion of LEAR — http://lear.inrialpes.fr/people/dorko/downloads.html.

On average, the two strategies yield similar number of samples per image. The

SIFT descriptors are scaled by a factor of 100 to prevent numerical instabilities

during learning of the Gaussian mixture models.

G.1.2 DCT Features

DCT features are computed on a dense regular grid, with a step of 1-to-

8 pixels (usually improved performance is obtained with lower step size, but at

the cost of computation). 8 × 8 image patches are extracted around each grid

point, and 8 × 8 DCT coefficients computed per patch and color channel. The

DCT coefficients are vectorized into a row vector using the coefficient scanning

mechanism defined by the MPEG standard. For monochrome images this results

in a feature space of 64 dimensions. For color images the space is 192 dimensional,

where the vectors for corresponding channels are interleaved. We currently use

the YBR color-space defined by MPEG, but this selection has not been subject to

detailed scrutiny.

G.1.3 Bag-of-Features

Using the bag of features representation, each image is modeled as a Gaus-

sian Mixture Model (GMM) with a fixed number C of mixture components. The

default value is C = 8 for DCT and C = 16 for SIFT, but can be modified when

the database is initialized. In general using more mixture components result in im-

proved performance, however the gains diminish over 16 mixture components. All

Gaussian mixture parameters are estimated using the EM algorithm. The imple-

mentation is fairly standard, the only details worth mentioning are the following.

1. All Gaussians have diagonal covariances.
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2. In order to avoid singularities, a variance limiting constrain is applied. This

constrain places a minimum value of 10(0.01) on the variance along each

dimension of the DCT(SIFT) feature space. Note, if new features are being

introduced, a good estimate of minimum covariance using cross-validation

techniques should be obtained.

3. Initialization is performed with a vector quantizer designed by the Linde-

Buzo-Gray (LBG) algorithm, using a variation of the cell splitting method

described in [81]. For more details please see [162].

4. The EM iterations for DCT(SIFT) features are restricted to 5(15) iterations.

More iterations are required for SIFT features as 1) there are more mixture

components, 2) unlike DCT, every dimension of SIFT has high variance.

G.1.4 Bag-of-Words

To obtain the bag-of-words representation, the space of image features is

quantized using the LBG algorithm with a fixed number B of clusters. The default

value is B = 256 codeword for both DCT and SIFT, although several experiments

are performed with codewords as high as 4096 (e.g. topic-supervised LDA models).

In general increasing the size of codebook leads to improved performance. Note

that the initialization of GMM uses the codebooks learned with LBG algorithm.

G.1.5 Semantic Multinomial

To compute the Semantic Multinomial(SMN), the posterior probability of

the concepts given an image, is computed using (2.21) for BoF and using (2.23)

for BoW. (2.21) yields SMN which are almost uniform for BoW. SMN are reg-

ularized using π0 = 1 for QBSE and π0 = 0.0001 for holistic context models.

Unless otherwise mentioned, similarity between two SMNs is computed using KL

divergence.
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G.2 Concept/Category Models

G.2.1 Appearance Based Models

GMM is the choice of probability distribution for the appearance based con-

cept models. Given a training set of images, along with their GMM learned using

the approach described above, appearance models are learned using hierarchical

estimation technique proposed in [162]. For DCT(SIFT), 128(512) mixture com-

ponents are used, although more mixture components leads to better performance.

G.2.2 Holistic Context Models

Contextual class models are learned using the outputs of appearance based

models. Dirichlet Mixture Model (DMM) is the choice of probability distribution.

Given a training set of images, DMM can be learned using image-SMNs, however

since most datasets used in this work has only ∼ 100 images per concept available

for training, data augmentation techniques of Section6.3.5 is employed. To increase

the cardinality of the training sets used for contextual modeling, 800 random sets

of 30 patches are sampled per image, yielding 800 patch-SMNs per image. Image-

SMNs are then computed from these, with (2.21) or (2.23).

The parameters of the contextual class models are learned using GEM as

described in Appendix B. The implementation is fairly standard, the only details

worth mentioning are the following.

1. The number of mixture components is set to 42. Given sufficient training

data, in general higher number of mixture components yield better recogni-

tion accuracies, however the benefits are limited over 40 mixture components.

2. In order to avoid singularities, a variance limiting constrain is applied. Since

both high and low values of α parameter can lead to low variance, α values are

constrained to a minimum and a maximum value of 0.01 and 100 respectively.

The performance of the system is not very sensitive to the choice of these

values, however a sanity check must be performed to ensure that they are

not beyond reasonable limits.
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3. Initialization is performed with a vector quantizer designed by the Linde-

Buzo-Gray (LBG) algorithm, using a variation of the cell splitting method

described as described above. The similarity between different SMN is com-

puted using KL divergence.

4. The GEM iterations are restricted to 15 iterations.

G.3 Topic Supervised LDA

Topic supervised LDA models are built using BoW representation with the

vocabulary size ranging from 128 to 4096. For each dataset, codebooks are gener-

ated from a random collection of 300 examples per training image. For experiments

using LDA and sLDA we use the code available online1. This code was modified

for cLDA and topic-supervised LDA. The number of topics is varied from 10 to 100

for topic discovery approaches. For topic-supervised models, the number of topics

is equal to the number of classes. The αk parameter is set to 1 in all experiments

except for cLDA and ts-cLDA, where an asymmetric αy parameter is learned per

class. Although not explicitly shown in Figure Figure 7.1, we use the “smoothed”

version of various LDA models with a Dirichlet prior on the topic-distributions [14],

using a symmetric hyper-parameter of 0.001. The performance of various models

is not very sensitive to the choice of both αk and the smoothing parameter.

1http://www.cs.princeton.edu/˜blei/lda-c/ and http://www.cs.princeton.edu/˜chongw/slda/
respectively.




