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3.1 Introduction

Content-based image retrieval, the problem of searching for digital images

in large image repositories according to their content, has been the subject of

significant research in the recent past [133, 101, 107, 160]. Two main retrieval

paradigms have evolved over the years: one based on visual queries, here referred

to as query-by-visual-example (QBVE), and the other based on text, here denoted

as semantic retrieval (SR). Early retrieval architectures were almost exclusively

based on QBVE [61, 134, 90, 101, 107]. Under this paradigm, each image is

decomposed into a number of low-level visual features (e.g. a color histogram)

and image retrieval is formulated as the search for the best database match to the

feature vector extracted from a query image. It was, however, quickly realized that

strict visual similarity is, in most cases, weakly correlated with the measures of

similarity adopted by humans for image comparison.

This motivated the more ambitious goal of designing retrieval systems with

support for semantic queries [109]. The basic idea is to annotate images with

semantic keywords, enabling users to specify their queries through a natural lan-

guage description of the visual concepts of interest. Because manual image labeling

is a labor intensive process, SR research turned to the problem of the automatic

extraction of semantic descriptors from images, so as to build models of visual

appearance of the semantic concepts of interest. This is usually done by the ap-

plication of machine learning algorithms. Early efforts targeted the extraction of

specific semantics [142, 152, 53, 45] under the framework of binary classification.

More recently there has been an effort to solve the problem in greater general-

ity, through the design of techniques capable of learning relatively large semantic

vocabularies from informally annotated training image collections. This can be

done with resort to both unsupervised [5, 35, 12, 41, 72] and weakly supervised

learning [70, 22].

In spite of these advances, the fundamental question of whether there is an

intrinsic value to building models at a semantic level, remains poorly understood.

On one hand, SR has the advantage of evaluating image similarity at a higher
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level of abstraction, and therefore better generalization1 than what is possible with

QBVE. On the other hand, the performance of SR systems tends to degrade for

semantic classes that they were not trained to recognize. Since it is still difficult to

learn appearance models for massive concept vocabularies, this could compromise

the generalization gains due to abstraction. This problem is seldom considered in

the literature, where most evaluations are performed with query concepts that are

known to the retrieval system [5, 12, 35, 41, 72, 22].

In fact, it is not even straightforward to compare the two retrieval paradigms,

because they assume different levels of query specification. While a semantic query

is usually precise (e.g. ‘the White House’) a visual example (a picture of the ‘White

House’) will depict various concepts that are irrelevant to the query (e.g. the street

that surrounds the building, cars, people, etc.). It is, therefore, possible that better

SR results could be due to a better interface (natural language) rather than an

intrinsic advantage of representing images semantically. This may be of little im-

portance when the goal is to build the next generation of (more accurate) retrieval

systems. However, given the complexity of the problem, it is unlikely that signifi-

cant further advances can be achieved without some understanding of the intrinsic

value of semantic representations. If, for example, abstraction is indeed valuable,

further research on appearance models that account for image taxonomies could

lead to exponential gains in retrieval accuracy. Else, if the advantages are simply

a reflection of more precise queries, such research is likely to be ineffective.

In this chapter, we introduce a novel image retrieval framework based on

semantic image representation, which extends the query-by-example paradigm to

the semantic domain. This consists of defining a semantic feature space, where

each image is represented by the vector of posterior concept probabilities assigned

to it by a semantic labeling system, and performing query-by-example in this

space. We refer to the combination of the two paradigms as query-by-semantic-

example (QBSE), and present an extensive comparison of its performance with

that of QBVE. It is shown that QBSE has significantly better performance for both

1Here, and throughout this work, we refer to the definition of ‘generalization’ common in
machine learning and content-based retrieval: the ability of the retrieval system to achieve low
error rates outside of the set of images on which it was trained.



34

concepts known and unknown to the retrieval system, i.e., it can generalize beyond

the vocabulary used for training. It is also shown that, since both QBSE and QBVE

share a common framework i.e. that of minimum probability of error retrieval [156],

the performance gain of QBSE over QBVE is intrinsic to the semantic nature of

image representation.

The chapter is organized as follows. Section 3.2 briefly reviews previous

retrieval work related to QBSE. Section 3.3 discusses the limitations of the QBVE

and SR paradigms, motivating the adoption of QBSE. Section 3.4 proposes an

implementation of QBSE, compatible with the MPE formulation. It is then argued,

in Section 3.5, that the generalization ability of QBSE can significantly benefit

from the combination of multiple queries, and various strategies are proposed to

accomplish this goal. A thorough experimental evaluation of the performance of

QBSE is presented in Section 3.6, where the intrinsic gains of semantic image

representations (over strict visual matching) are quantified.

3.2 Related Work

Although the task of building semantic image representations for image re-

trieval, has been on recent interest in the community, few proposals have so far been

presented on how to best exploit the semantic space for the design of retrieval sys-

tems. A somewhat popular technique to construct content-based semantic spaces,

is to resort to active learning based on user’s relevance feedback [161, 87, 56]. The

idea is to pool the images relevant to a query, after several rounds of relevance feed-

back, to build a model for the semantic concept of interest. Assuming that 1) these

images do belong to a common semantic class, and 2) the results of various rele-

vance feedback sessions can be aggregated, this is a feasible way to incrementally

build a semantic space. An example is given in [75], where the authors propose a

retrieval system based on image embeddings. Using relevance feedback, the sys-

tem gradually clusters images and learns a non-linear embedding which maps these

clusters into a hidden space of semantic attributes. Cox et al. [26] also focus on

the task of learning a predictive model for user selections, by learning a mapping
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between 1) the image selection patterns made by users instructed to consider visual

similarity and 2) those of users instructed to consider semantic similarity.

These works have focused more on the issue of learning the semantic space

than that of its application to retrieval. In fact, it is not always clear how the

learned semantic information could be combined with the visual search at the core

of the retrieval operation. Furthermore, the use of relevance feedback to train

a semantic retrieval system has various limitations. First, it can be quite time

consuming, since a sizable number of examples is usually required to learn each

semantic model. Second, the assumption that all queries performed in a relevance

feedback session are relative to the same semantic concept is usually not realistic,

even when users are instructed to do so. For example, a user searching for pictures

of ‘cafes in Paris’ is likely to oscillate between searching for pictures of ‘cafes’ and

pictures of ‘Paris’.

The closest works in the literature, to the QBSE paradigm adopted here,

are those of [137, 135, 86], where retrieval is carried out based on computing L2

similarity between “model-vectors”, a representation similar to that of semantic

image representation. While laying the foundations for QBSE, [137, 135] did not

investigate any of the fundamental questions that we now consider. First, because

there was no attempt to perform retrieval on databases not used for training, it

did not address the problem of generalization to concepts unknown to the retrieval

system. As we will see, this is one of the fundamental reasons to adopt QBSE in-

stead of the standard SR query paradigm. Second, although showing that QBSE

outperformed a QBVE system, this work did not rely on the same image repre-

sentation for the two query paradigms. While QBVE was based on either color or

edge histogram matching, QBSE relied on a feature space composed of a multi-

tude of visual features, including color and edge histograms, wavelet-based texture

features, color correlograms and measures of texture co-occurrence. Because the

representations are different, it is impossible to conclude that the improved per-

formance of the QBSE system derives from an intrinsic advantage of semantic

representations. In what follows, we preempt this caveat by adopting the same

image representation and retrieval framework for the design of all systems.
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3.3 Query by Semantic Example

Both the QBVE and SR implementations of MPE retrieval have been ex-

tensively evaluated in [156] and [21, 22]. Although these evaluations have shown

that the two implementations are among the best known techniques for visual and

semantic retrieval, the comparison of the two retrieval paradigms is difficult. We

next discuss this issue in greater detail, and motivate the adoption of an alter-

native retrieval paradigm, QBSE, that combines the best properties of the two

approaches.

3.3.1 Query by Visual Example vs Semantic Retrieval

Both QBVE and SR have advantages and limitations. Because concepts

are learned from collections of images, SR can generalize significantly better than

QBVE. For example, by using a large training set of images labeled with the

concept ‘sky’, containing both images of sky at daytime (when the sky is mostly

blue) and sunsets (when the sky is mostly orange), a SR system can learn that

‘sky’ is sometimes blue and others orange. This is a simple consequence of the

fact that a large set of ‘sky’ images populate, with high probability, the blue and

orange regions of the feature space. It is, however, not easy to accomplish with

QBVE, which only has access to two images (the query and that in the database)

and can only perform direct matching of visual features. We refer to this type of

abstraction, as generalization inside the semantic space, i.e., inside the space of

concepts that the system has been trained to recognize.

While better generalization is a strong advantage for SR, there are some

limitations associated with this paradigm. An obvious difficulty is that most im-

ages have multiple semantic interpretations. 3.1 presents an example, identifying

various semantic concepts as sensible annotations for the image shown. Note that

this list, of relatively salient concepts, is a small portion of the keywords that could

be attached to the image. Other examples include colors (e.g. ‘yellow’ train), or

objects that are not salient in an abstract sense but could become very relevant

in some contexts (e.g. the ‘paint’ of the markings on the street, the ‘letters’ in
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Figure 3.1: An image containing various concepts: ‘train’, ‘smoke’, ‘road’, ‘sky’,

‘railroad’, ‘sign’, ‘trees’, ‘mountain’, ‘shadows’, with variable degrees of presence.

the sign, etc.). In general, it is impossible to predict all annotations that may be

relevant for a given image. This is likely to compromise the performance of a SR

system. Furthermore, because queries are specified as text, a SR system is usu-

ally limited by the size of its vocabulary2. In summary, SR can generalize poorly

outside the semantic space.

Since visual retrieval has no notion of semantics, it is not constrained by

either vocabulary or semantic interpretations. When compared to SR, QBVE

systems can generalize better outside the semantic space. In the example of 3.1,

a QBVE would likely return the image shown as a match to a query depicting an

industrial chimney engulfed in dark smoke (a more or less obvious query prototype

for images of ‘pollution’) despite the fact that the retrieval system knows nothing

about ‘smoke’, ‘pollution’, or ‘chimneys’. Obviously, there are numerous examples

where QBVE correlates much worse with perceptual similarity than SR. We have

already seen that when the latter is feasible, i.e. inside the semantic space, it has

better generalization. Overall, it is sensible to expect that SR will perform better

2It is, of course, always possible to rely on text processing ideas based on thesauri and on-
tologies like WordNet [39] to mitigate this problem. For example, query expansion can be used
to replace a query for ‘pollution’ by a query for ‘smoke’, if the latter is in the vocabulary and
the former is not. While such techniques are undeniably useful for practical implementation of
retrieval systems, they do not reflect an improved ability, by the retrieval system, to model the
relationships between visual features and words. They are simply an attempt to fix these limi-
tations a posteriori (i.e. at the language level) and are, therefore, beyond the scope of this work.
In practice, it is not always easy to perform text-based query expansion when the vocabulary is
small, as is the case for most SR systems, or when the queries report to specific instances (e.g. a
person’s name).
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inside the semantic space, while QBVE should fare better outside of it. In practice,

however, it is not easy to compare the two retrieval paradigms. This is mostly due

to the different forms of query specification. While a natural language query is

usually precise (e.g. ‘train’ and ‘smoke’), a query image like that of 3.1 always

contains a number of concepts that are not necessarily relevant to the query (e.g.

‘mountain’, or even ‘yellow’ for the train color). Hence, the better performance of

SR (inside the semantic space) could be simply due to higher query precision. A

fair comparison would, therefore, require the optimization of the precision of visual

queries (e.g. by allowing the QBVE system to rely on image regions as queries)

but this is difficult to formalize.

Overall, both the engineering question of how to design better retrieval

systems (with good generalization inside and outside of the semantic space) and

the scientific question of whether there is a real benefit to semantic representations,

are difficult to answer under the existing query paradigms. To address this problem

we propose an alternative paradigm, which is denoted as query by semantic example

(QBSE).

3.3.2 Query by Semantic Example

A QBSE system operates on a semantic space - the space of semantic

features introduced in Chapter 2, according to a similarity mapping f : SL →
{1, . . . , D} such that

f(π) = arg max
y

s(π,πy) (3.1)

where SL is the semantic space, π the query SMN and πy the SMN that charac-

terizes the yth database image, and s(·, ·) an appropriate similarity function. As

shown in 3.2 (top), the user provides a query image, for which a SMN π is com-

puted, and compared to all the SMNs πy previously stored for the images in the

database. Note that this paradigm differs from SR, as in SR the user specifies a

short natural language description which implies only a small number of concepts

are assigned non-zero probability. This is illustrated in 3.2 (bottom) where queries

in SR are restricted to the edges of the semantic space.

QBSE query paradigm has a number of interesting properties. As discussed
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Figure 3.2: Semantic image retrieval. Top: Under QBSE the user provides a

query image, probabilities are computed for all concepts, and the image repre-

sented by the concept probability distribution. Bottom: Under the traditional SR

paradigm, the user specifies a short natural language description, and only a small

number of concepts are assigned a non-zero posterior probability.

in Chapter 2, the semantic space SL is defined by the concepts in the vocabulary

known to the system. The semantic features, or concepts, outside the vocabulary

simply define directions orthogonal to the learned semantic space. This implies

that, by projecting these dimensions onto the simplex, the QBSE system can gen-
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eralize beyond the known semantic concepts. In the example of 3.1, the mapping

of the image onto the semantic simplex assigns high probability to (known) con-

cepts such as ‘train’, ‘smoke’, ‘railroad’ etc. This makes the image a good match

for other images containing large amounts of ‘smoke’, such as those depicting in-

dustrial chimneys or ‘pollution’ in general. The system can therefore establish a

link between the image of 3.1 and ‘pollution’, despite the fact that it has no ex-

plicit knowledge of the ‘pollution’ concept3. Second, when compared to QBVE,

QBSE complements all the advantages of query by example with the advantages

of a semantic representation. Moreover, since in both cases queries are specified by

the same examples, any differences in their performance can be directly attributed

to the semantic vs. visual nature of the associated image representations4. This

enables the objective comparison of QBVE and QBSE.

3.4 The Proposed Query by Semantic Example

System

QBSE is a generic retrieval paradigm and, as such, can be implemented in

many different ways. Any implementation must specify a method to estimate the

SMN that describes each image, and a similarity function between SMNs. In the

implementation presented herein, the SMN vectors πi are learned with a semantic

labeling system described in 2.2, which implements the mapping Π, by computing

an estimate of posterior concept probabilities given the observed feature vectors

πw = PW |X(w|I). (3.2)

In the rest of this section, we describe the various similarity functions.

3Note that this is different from text-based query expansion, where the link between ‘smoke’
and ‘pollution’ must be explicitly defined. In QBSE, the relationship is instead inferred auto-
matically, from the fact that both concepts have commonalities of visual appearance.

4This assumes, of course, that a common framework, such as MPE, is used to implement both
the QBSE and QBVE systems.



41

3.4.1 Similarity Function

There are many known methods to measure the distance between two prob-

ability distributions, all of which can be used to measure the similarity of two

SMNs. Furthermore, because the latter can also be interpreted as normalized vec-

tors of counts, this set can be augmented with all measures of similarity between

histograms. We have compared various similarity functions for the purpose of

QBSE.

Kullback-Leibler (KL) Divergence

The KL divergence between two distributions π and π′ is

sKL(π,π
′) = KL(π||π′) =

L
∑

i=1

πi log
πi
π′
i

. (3.3)

It is non-negative, and equal to zero when π = π′. For retrieval, it also has

an intuitive interpretation as the asymptotic limit of (2.1) when Y is uniformly

distributed [158]. However, it is not symmetric, i.e. KL(π||π′) 6= KL(π′||π). A

symmetric version can be defined as

ssymmKL(π,π′) = KL(π||π′) +KL(π′||π) (3.4)

=

L
∑

i=1

πi log
πi
π′
i

+

L
∑

i=1

π′
i log

π′
i

πi
. (3.5)

Jensen-Shannon Divergence

The Jensen-Shannon divergence (JS) is a measure of whether two samples,

as defined by their empirical distributions, are drawn from the same source distri-

bution [25]. It is defined as

sJS(π,π
′) = KL(π||π̂) +KL(π′||π̂) (3.6)

where π̂ = 1
2
π + 1

2
π′. This divergence can be interpreted as the average distance

(in the KL sense) between each distribution and the average of all distributions.



42

Correlation

The correlation between two SMNs is defined as

sCO(π,π′) = πTπ′ =

L
∑

i

πi × π′
i. (3.7)

Unlike the KL or JS divergence, which attain their minimum value (zero) for

equal distributions, correlation is maximum in this case. The maximum value is,

however, a function of the distributions under consideration. This limitation can

be avoided by the adoption of the normalized correlation,

sNC(π,π′) =
πTπ′

||π||||π′|| =

∑L
i πi × π′

i
√

∑

π2
j

√

∑

π′2
j

. (3.8)

Other Similarity Measures

A popular set of image similarity metrics is that of Lp distances

sLp(π,π′) =

(

L
∑

i=1

|πi − π′
i|p
)

1
p

. (3.9)

These distances are particularly common in color-based retrieval, where they are

used as metrics of similarity between color histograms. Another popular metric is

the histogram intersection (HI) [141],

sHI(π,π
′) =

L
∑

i=1

min(πi, π
′
i), (3.10)

the maximization of which is equivalent minimizing the L1 norm.

3.5 Multiple Image Queries

A QBSE system can theoretically benefit from the specification of queries

through multiple examples. We next give some reasons for this and discuss various

alternatives for query combination.
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3.5.1 The Benefits of Query Fusion

Semantic image labeling is, almost by definition, a noisy endeavor. This

is a consequence of the fact that various interpretations are usually possible for

a given arrangement of image intensities. An example is given in 1.1 where we

show an image and the associated SMN. While most of the probability mass is

assigned to concepts that are present in the image (‘railroad’, ‘locomotive’, ‘train’,

‘street’, or ‘sky’), two of the concepts of largest probability do not seem related

to it: ‘bridge’, and ‘arch’. Close inspection of the image (see close-up presented

in the figure), provides an explanation for these labels: when analyzed locally,

the locomotive’s roof actually resembles the arch of a bridge. This visual feature

seems to be highly discriminant, since when used as a query in a QBVE system,

most of the top matches are images with arch-like structures, not trains (see 3.6).

While these types of errors are difficult to avoid, they are accidental . In particular,

the arch-like structure of 1.1 is the result of viewing a particular type of train, at

a particular viewing angle, and a particular distance. It is unlikely that similar

structures will emerge consistently over a set of train images. There are obviously

other sources of error, such as classification mistakes for which it is not possible

to encounter a plausible explanation. But these are usually even less consistent,

across a set of images, than those due to accidental visual resemblances. A pressing

question is then whether it is possible to exploit the lack of consistency of these

errors to obtain a better characterization of the query image set?

We approach this question from a multiple instance learning perspective [92,

2], formulating the problem as one of learning from bags of examples. In QBSE,

each image is modeled as a bag of feature vectors, which are drawn from the

different concepts according to the probabilities πi. When the query consists of

multiple images, or bags, the negative examples that appear across those bags

are inconsistent (e.g. the feature vectors associated with the arch-like structure

which is prominent in 1.1 but does not appear consistently in all train images),

and tend to be spread over the feature space (because they also depict background

concepts, such as roads, trees, mountains, etc., which vary from image to image).

On the other hand, feature vectors corresponding to positive examples are likely
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to be concentrated within a small region of the space. It follows that, although

the distribution of positive examples may not be dominant in any individual bag,

the consistent appearance in all bags makes it dominant over the entire query

ensemble. This suggests that a better estimate of the query SMN should be possible

by considering a set of multiple query images.

In addition to higher accuracy, a set of multiple queries is also likely to have

better generalization, since a single image does not usually exhibit all possible

visual manifestations of a given semantic class. For example, images depicting

‘bikes on roads’ and ‘cars in garage’ can be combined to retrieve images from the

more general class of ‘vehicles’. A combination of the two query image sets enables

the retrieval system to have a more complete representation of the vehicle class,

by simultaneously assigning higher weights to the concepts ‘bike’, ‘cars’, ‘road’,

and ‘garage’. This enables the retrieval of images of ‘bikes in garage’ and ‘cars on

roads’, matches that would not be possible if the queries were used individually.

3.5.2 Query Combination

Under MPE retrieval, query combination is relatively straightforward to

implement by QBVE systems. Given two query images I1
q = {x1

1,x
1
2, . . . ,x

1
n}

and I2
q = {x2

1,x
2
2, . . . ,x

2
n}, the probability of the composite query ICq = {x1

1,

x1
2, . . . ,x

1
n,x

2
1,x

2
2, . . . ,x

2
n} given class Y = y is

PX|Y (ICq |y) =
n
∏

k=1

PX|Y (x1
k|y)

n
∏

l=1

PX|Y (x2
l |y) (3.11)

= PX|Y (I1
q |y)PX|Y (I2

q |y).

The MPE decision of (2.1) for the composite query is obtained by combining (3.11)

with (2.4) and Bayes rule.

In the context of QBSE, there are at least three possibilities for query

combination. The first is equivalent to (3.11), but based on the probability of the
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composite query ICq given semantic class W = w,

PX|W (ICq |w) =
n
∏

k=1

PX|W (x1
k|w)

n
∏

l=1

PX|W (x2
l |w) (3.12)

= PX|W (I1
q |w)PX|W (I2

q |w),

which is combined with (2.9) and Bayes rule to compute the posterior concept

probabilities of (3.2). We refer to (3.12) as the ‘LKLD combination’ strategy for

query combination. It is equivalent to taking a geometric mean of the probabilities

of the individual images given the class.

A second possibility is to represent the query as a mixture of SMNs. This

relies on a different generative model than that of (3.12): the ith query is first

selected with probability λi and a count vector is then sampled from the associated

multinomial distribution. It can be formalized as

PT(ICq ; πq) =
n!

∏L
k=1 ck!

L
∏

j=1

(λ1π
j
1 + λ2π

j
2)
cj , (3.13)

where PT(ICq ; πq) is the multinomial distribution for the query combination, of

parameter πq = λ1π1 + λ2π2. π1 and π2 are the parameters of the individual

multinomial distribution, and λ = (λ1, λ2)
T the vector of query selection probabil-

ities. If λ1 = λ2, the two SMNs are simply averaged. We adopt the uniform query

selection prior, and refer to this strategy as ‘SMN combination’. Geometrically, it

sets the combined SMN to the centroid of the simplex that has the SMNs of the

query images as vertices. This ranks highest the database SMN which is closest to

this centroid.

The third possibility, henceforth referred to as ‘KL combination’, is to ex-

ecute the multiple queries separately, and combine the resulting image rankings.

For example, when similarity is measured with the KL divergence, the divergence

between the combined image SMN, πq, and database SMNs πy is,

sKL(πq,πy) =
1

2
KL(π1||πy) +

1

2
KL(π2||πy). (3.14)

It is worth noting that this combination strategy is closely related to that used in

QBVE. Note that the use of (3.11) is equivalent to using the arithmetic average

(mean) of log-probabilities which, in turn, is identical to combining image rankings,

as in (3.14). For QBVE the two combination approaches are identical.
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3.6 Experimental Evaluation

In this section we report on an extensive evaluation of QBSE. We start

by describing the evaluation procedure and the various databases used. This is

followed by some preliminary tuning of the parameters of the QBSE system and

the analysis of a number of retrieval experiments, that can be broadly divided into

two classes. Both compare the performance of QBSE and QBVE, but while the first

is performed inside the semantic space, the second studies retrieval performance

outside of the latter.

3.6.1 Evaluation Procedure

In all cases, performance is measured with precision and recall, a classical

measure of information retrieval performance [125], which is also widely used by the

image retrieval community [136], and one of the metrics adopted by the TRECVID

evaluation benchmark. Given a query and the top ‘N ’ database matches, also

called as scope, if ‘r’ of the retrieved objects are relevant (where relevant means

belonging to the class of the query), and the total number of relevant objects in the

database is ‘R’, then precision is defined as ‘r/N ’, i.e. the percentage of N which

are relevant and recall as ‘r/R’, which is the percentage of all relevant images

contained in the retrieved set. Precision-recall is commonly summarized by the

mean average precision (MAP)[41]. This consists of averaging the precision at the

ranks where recall changes, and taking the mean over a set of queries. Because

some authors [123] consider the characterization of retrieval performance by curves

of precision-scope more expressive for image retrieval, we also present results with

this measure.

3.6.2 Databases

The evaluation of a QBSE system requires three different databases. The

first is a training database, used by the semantic labeling system to learn concept

probabilities. The second is a retrieval database from which images are to be

retrieved. The third is a database of query images, which do not belong to either



47

Table 3.1: Retrieval and Query Database

Database Corel371 Corel15 Flickr18

Semantic Space Inside Outside Outside

Source Corel CDs Corel CDs flickr.com

# Retrieval Images 4500 1200 1440

# Query Images 500 300 360

# Classes 50 15 18

the training or retrieval databases. In the first set of experiments, the training

and retrieval databases are identical, and the query images are inside the semantic

space. This is the usual evaluation scenario for semantic image retrieval [35, 72,

41]. In the second, designed to evaluate generalization, both query and retrieval

databases are outside the semantic space.

Training Database

We relied on Corel371 dataset as the training database for all experiments.

A detailed description ofCorel371 dataset is provided in Appendix A.1.3. 4, 500

training images are used to learn the semantic space. Since overall there are 371

concepts, this leads to a 371-dimensional semantic space. With respect to image

representation, all images were normalized to size 181× 117 or 117× 181 and con-

verted from RGB to the YBR color space. Image observations were derived from

8 × 8 patches obtained with a sliding window, moved in a raster-scan fashion. A

feature transformation was applied to this space by computing the 8 × 8 discrete

cosine transform (DCT) of the three color components of each patch. The param-

eters of the semantic class mixture hierarchies were learned in the subspace of the

resulting 192-dimension feature space composed of the first 21 DCT coefficients

from each channel. In all experiments, the SMN associated with each image was

computed with these semantic class-conditional distributions.
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Retrieval and Query Database

To evaluate retrieval performance we carried out tests on three databases

Corel371, Corel15 and Flickr18, the details of which are provided in Appendix A.1.3

and Appendix A.1.4.

Inside the Semantic Space Retrieval performance inside the semantic space

was evaluated by using Corel371 as both retrieval and query database. More pre-

cisely, the 4500 training images served as the retrieval database and the remaining

500 as the query database. This experiment relied on clear ground truth regarding

the relevance of the retrieved images, based on the theme of the CD to which the

query belonged.

Outside the Semantic Space To test performance outside the semantic space,

we relied on two additional databases viz Corel15 and Flickr18. For both databases,

20% of randomly selected images served as query images and the remaining 80%

as the retrieval database. 3.1 summarizes the composition of the databases used.

A QBVE system only requires a query and a retrieval database. In all

experiments, these were made identical to the query and retrieval databases used

by the QBSE system. Since the performance of QBVE does not depend on whether

queries are inside or outside the semantic space, this establishes a benchmark for

evaluating the generalization of QBSE.

3.6.3 Model Tuning

All parameters of our QBVE system have been previously optimized, as

reported in [156]. Here, we concentrate on the QBSE system, reporting on the

impact of 1) SMN regularization, and 2) choice of similarity function on the re-

trieval performance. The parameters resulting from this optimization were used

in all subsequent experiments.
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Table 3.2: Effect of SMN regularization on the MAP score of QBSE

Ratio MAP score

Corel371 Corel15 Flickr18

100 0.1544 0.1878 0.1447

10 0.1744 0.2030 0.1557

1 0.1833 0.2156 0.1625

0.1 0.1768 0.2175 0.1615

0.01 0.1709 0.2160 0.1594

0.001 0.1683 0.2150 0.1578

0.0001 0.1672 0.2144 0.1569

0.00001 0.1667 0.2141 0.1564

Effect of regularization on QBSE

3.2 presents the MAP obtained with values of Lπ0 (2.18), ranging from 10−5

to 100. 3.3 presents the SMN of the train query of 3.6, for some of the values of

Lπ0. It can be seen that very large values of α force the SMN towards a uniform

distribution, e.g. 3.3c, and almost all semantic information is lost. 3.3b shows

the SMN regularized with the optimal value of π0 = 1/L, where exceedingly low

concept probabilities are lower-bounded by the value of 0.001. This regularization

is instrumental in avoiding very noisy distance estimates during retrieval.

Effect of the Similarity Function on QBSE

3.3 presents a comparison of the seven similarity functions discussed in the

text. It is clear that L2 distance and histogram intersection do not perform well.

All information theoretic measures, KL divergence, symmetric KL divergence and

Jensen-Shanon divergence, have superior performance, with an average improve-

ment of 15%. Among these the KL divergence performs the best. The closest com-

petitors to KL divergence are the correlation and normalized correlation metrics.

Although, they outperform KL divergence inside the semantic space (Corel371),

their performance is inferior for databases outside the semantic space (Flickr18,
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Figure 3.3: SMN of the train query of 3.6 as a function of the ratio L(α−1)
n

adopted

for its regularization.

Table 3.3: Effect of the similarity function on the MAP score of QBSE

Similarity Function MAP score

Corel371 Corel15 Flickr18

KL divergence 0.1768 0.2175 0.1615

Symmetric KLD 0.1733 0.2164 0.1602

Jensen-Shanon 0.1740 0.2158 0.1611

Correlation 0.2108 0.1727 0.1392

Normalized Correlation 0.1938 0.2041 0.1595

L2 distance 0.1461 0.1830 0.1408

Histogram Intersection 0.1692 0.2119 0.1600
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Figure 3.4: Average precision-recall of single-query QBSE and QBVE, Left: In-

side the semantic space (Corel371), Right: Outside the semantic space (Flickr18).
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Figure 3.5: MAP scores of QBSE and QBVE across the 50 classes of Corel371.

Corel15).This indicates that the KL divergence is likely to have better generaliza-

tion. While further experiments will be required to reach definitive conclusions,

this has led us to adopt the KL divergence in the remaining experiments.

3.6.4 Performance Within the Semantic Space

3.4 (left) presents the precision-recall curves obtained on Corel371 with

QBVE and QBSE. It can be seen that the precision of QBSE is significantly higher

than that of QBVE, at most levels of recall. The competitive performance of QBVE

at low recall can be explained by the fact that there are always some database
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Query Image Top 5 retrieved images using QBVE and QBSE

Figure 3.6: Some examples where QBSE performs better than QBVE. The second

row of every query shows the images retrieved by QBSE.

images which are visually similar to the query. However, performance decreases

much more dramatically than that of QBSE, as recall increases, confirming the

better generalization ability of the latter. The MAP scores for QBSE and QBVE

are 0.1665 and 0.1094 respectively and the chance MAP performance is 0.0200.

3.5 presents a comparison of the performance on individual classes, showing that

QBSE outperforms QBVE in almost all cases.

The advantages of QBSE are also illustrated by 3.6, where we present the

results of some queries, under both QBVE and QBSE. Note, for example, that

for the query containing white smoke and a large area of dark train, QBVE tends

to retrieve images with whitish components, mixed with dark components, that

have little connection to the train theme. Furthermore, the arch-like structure

highlighted in 1.1 seems to play a prominent role in visual similarity, since three of

the five top matches contain arches. Due to its higher level of abstraction, QBSE
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is successfully able to generalize the main semantic concepts of train, smoke and

sky, realizing that the white color is an irrelevant attribute to this query (as can be

seen in the last column, where an image of train with black smoke is successfully

retrieved).

3.6.5 Multiple Image Queries

Since the test set of Corel371 contains 9 to 11 images from each class, it

is possible to use anywhere from 1 to 9 images per query. When the number

of combinations was prohibitively large (for example, there are close to 13, 000

combinations of 5 queries), we randomly sampled a suitable number of queries

from the set. 3.7 (left) shows the MAP values for multiple image queries, as a

function of query cardinality, under both QBVE and QBSE for Corel371. In the

case of QBSE, we also compare the three possible query combination strategies:

‘LKLD’,‘SMN’, and ‘KL Combination’. It is clear that, inside the semantic space,

the gains achieved with multiple QBSE queries are unparalleled on the visual

domain. In [143], the authors have experimented with multiple query images on a

QBVE system. They show that, using two examples, precision increases by around

15% at 10% recall (over single example queries) but no further improvements are

observed for three or more images. We have found that, while the MAP of QBSE

increases with the number of images, no gain is observed under QBVE. For QBSE,

among the various combination methods, combining SMNs yields best results, with

a gain of 29.8% over single image queries. ‘LKLD’ and ‘KL Combination’ exhibit

a gain of 17.3% and 26.4% respectively. For QBSE, the increase of precision with

query cardinality is experienced at all levels of recall.

3.8 shows the performance of 1-9 image queries for the best and the worst

ten classes, sorted according to the gain in MAP score. It is interesting to note that

in all of the best 10 classes, single image query performs well above chance, while

the opposite holds for the worst 10. This means that moderate performance of a

QBSE system can be considerably enhanced by using multiple query images, but

this is not a cure for fundamental failures. Overall, the MAP score increases with

the number of queries for 76% of the classes. For the classes with unsatisfactory
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Figure 3.7: MAP as a function of query cardinality for multiple image queries.

Comparison of QBSE, with various combination strategies, and QBVE. Left: Inside

the semantic space (Corel371), Right: Outside the semantic space (Flickr18).

MAP score, poor performance can be explained by 1) significant inter-concept

overlap (e.g., ‘Air Shows’ vs. ‘Aviation Photography’), 2) incongruous concepts

that would be difficult even for a human labeler (e.g. ‘Holland’ and ‘Denmark’), or

3) failure to learn semantic homogeneity among the images, e.g. ‘Spirit of Buddha’.

Nevertheless, for 86% of the classes QBSE outperforms QBVE by an average MAP

score of 0.136. On the remaining QBVE is only marginally better than QBSE, by

an average MAP score of 0.016. 3.9 (Left) presents the average precision-recall

curves, obtained with the number of image queries that performed best, for QBSE

and QBVE on Corel371. It is clear that QBSE significantly outperforms QBVE

at all levels of recall, the average MAP gain being of 111.73%.

3.6.6 Performance Outside the Semantic Space

3.4 (Right) presents precision-recall curves obtained on Flickr185, show-

ing that outside the semantic space single-query QBSE is marginally better than

QBVE. When combined with 3.4 (Left), it confirms that, overall, single-query

QBSE has better generalization than visual similarity: it is substantially bet-

ter inside the semantic space, and has slightly better performance outside of it.

5For brevity, we only document the results obtained with Flickr18, those of Corel15 were
qualitatively similar
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Figure 3.8: Effect of multiple image queries on the MAP score of various classes

from Corel371. Left: Classes with highest MAP gains, Right: Classes with lowest

MAP gains
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Figure 3.9: Best precision-recall curves achieved with QBSE and QBVE on

Corel371. Left: Inside the semantic space (Corel371), also shown is the per-

formance with meaningless semantic space. Right: Outside the semantic space

(Flickr18).
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Query Image Multiple Image Query

township

Helicopter

Figure 3.10: Examples of multiple-image QBSE queries. Two queries (for “Town-

ship” and “Helicopter”) are shown, each combining two examples. In each case,

two top rows presents the single-image QBSE results, while the third presents the

combined query.
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Figure 3.11: SMN of individual and combined queries from class ‘Township’ of

3.10. Left column shows the first query SMN, center the second and, right the

combined query SMN.

For multiple image queries we performed experiments with up to 20 images per

query (both databases contain 20 test images per class). As was the case for

Corel371, multiple image queries benefit QBSE substantially but have no advan-

tage for QBVE. This is shown in 3.7 (Right), where we present the MAP score as

a function of query cardinality. With respect to the combination strategy, ‘SMN’

once again outperforms ‘KL’(slightly) and ‘LKLD Combination’ (significantly).

An illustration of the benefits of multiple image queries is given in 3.10.

The two top rows present query images from the class ‘Township’(Flickr18) and

single-query QBSE retrieval results. The third row presents the result of combining

the two queries by ‘SMN combination’. It illustrates the wide variability of visual

appearance of the images in the ‘Township’ class. While single-image queries fail

to express the semantic richness of the class, the combination of the two images

allows the QBSE system to expand ‘indoor market scene’ and ‘buildings in open

air’ to an ‘open market street’ or even a ‘railway platform’. This is revealed, by

the SMN of the combined query, presented in 3.11 (right), which is a semantically

richer description of the visual concept ‘Township’, containing concepts (like ‘sky’,

‘people’, ‘street’, ‘skyline’) from both individual query SMNs. The remaining three

rows of 3.10 present a similar result for the class ‘Helicopter’ (Corel15).

Finally, 3.9 presents the best results obtained with multiple queries under

both the QBSE and QBVE paradigms. A similar comparison, using the precision-
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Figure 3.12: Performance of QBSE compared to QBVE, based on precision-scope

curve for N = 1 to 100, Left: Inside the semantic space (Corel371), Right: Outside

the semantic space (Flickr18).

Table 3.4: MAP of QBVE and QBSE on all datasets considered.

Database Chance QBVE QBSE % increase

Corel371 0.0200 0.1067 0.2259 111.73

Corel15 0.0667 0.2176 0.2980 36.95

Flickr18 0.0556 0.1373 0.2134 55.47

scope curve is shown in 3.12. It is clear that, when multiple image queries are

adopted, QBSE significantly outperforms QBVE, even outside the semantic space.

3.4 summarizes the MAP gains of QBSE, over QBVE, for all datasets considered.

In the case of Flickr18 the gain is of 55.47%. Overall, the table emphatically

points out that QBSE significantly outperforms QBVE, both inside and outside the

semantic space. Since the basic visual representation (DCT features and Gaussian

mixtures) is shared by the two approaches, this is strong indication that there

is a benefit to the use of semantic representations in image retrieval. To further

investigate this hypothesis we performed a final experiment, based on QBSE with a

semantically meaningless space. Building on the fact that all semantic models are

learned by grouping images with a common semantic concept, this was achieved

by replicating the QBSE experiments with random image groupings. That is,

instead of a semantic space composed of concepts like ‘sky’ (learned from images
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containing sky), we created a ‘semantic space’ of nameless concepts learned from

random collections of images. 3.9 (left) compares (on Corel371) the precision-

recall obtained with QBSE on this ‘meaningless semantic space’, with the previous

results of QBVE and QBSE. It is clear that, in the absence of semantic structure,

QBSE has very poor performance, and is clearly inferior to QBVE.

3.7 Acknowledgments

The author would like to thank Gustavo Carneiro and Pedro Moreno for

helpful discussions and comments.

The text of Chapter 3, in part, is based on the material as it appears

in: N. Rasiwasia, P. J. Moreno and N. Vasconcelos, ‘Bridging the Semantic Gap:

Query by Semantic Example’, IEEE Transactions on Multimedia, 9(5), 923-938,

August 2007, N. Rasiwasia, P. J. Moreno and N. Vasconcelos, ‘Query by Semantic

Example’, ACM International Conference on Image and Video Retrieval, LNCS 51-

60, Phoenix, 2006, and N. Rasiwasia and N. Vasconcelos, ‘A Systematic Study of

the role of Context on Image Classification’, IEEE Conference on Image Processing,

1720-1723, San Diego, Oct 2008. The dissertation author was a primary researcher

and an author of the cited material.




