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In this chapter we introduce the problem of scene classification and present

a novel solution based on semantic image representation.

4.1 Introduction

Scene classification is an important problem for computer vision, and has

received considerable attention in the recent past. It differs from the conventional

object detection/classification, to the extent that a scene is composed of several

entities often organized in an unpredictable layout[113]. Images of scenes also dif-

fer from images of objects with respect to the distance between the camera and

the elements in the image [104]. For a given scene, it is virtually impossible to

define a set of properties that would be inclusive of all its possible visual manifes-

tations. Frequently, images from two different scene categories are visually similar,

e.g., it can be difficult to distinguish between scenes such as “open country” and

“mountain” (see Sec. 4.4).

Early efforts at scene classification targeted binary problems, such as dis-

tinguishing indoor from outdoor scenes [142], city views from landscape etc. Sub-

sequent research was inspired by the literature on human perception. In [9], it

was shown that humans can recognize scenes by considering them in a “holis-

tic” manner, without recognizing individual objects. Recently, it was also found

that humans can perform high-level categorization tasks extremely rapidly [144]

in the near absence of attention [78]. Drawing inspiration from the perceptual

literature, [104] proposes a low dimensional representation of scenes, based on

several global properties such as “naturalness”, “openness”, etc. More recently,

there has been an effort to solve the problem in greater generality, through de-

sign of techniques capable of classifying relatively large number of scene categories

[166, 77, 113, 74, 16, 83], and a dataset of 15 categories has been used to com-

pare the performance of various systems[74, 83]. These methods tend to rely on

local region descriptors, modeling an image as a bag-of-features (BoF, see Sec-

tion 2.1.1. The space of local region descriptors is then quantized, based on some

clustering mechanism, and the mean vectors of these clusters, commonly known
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as “visual-words”1 are chosen as their representatives, thereby yielding the bag-of-

words (BoW) representation. This representation is motivated by the time-tested

BoW model, widely used in text-retrieval [125]. The analogy between visual-words

and text-words is also explored in [130].

Lately, various extensions of this basic BoW model have been proposed

[77, 113, 16, 83]. All such methods aim to provide a compact lower dimensional rep-

resentation using some intermediate characterization on a latent space, commonly

known as the intermediate “theme” or “topic” representation [77]. The rationale

is that images which share frequently co-occurring visual-words have similar rep-

resentation in the latent space, even if they have no visual-words in common. This

leads to representations robust to the problems of polysemy - a single visual-words

may represent different scene content, and synonymy - different visual-words may

represent the same content [113]. It also helps to remove the redundancy that

may be present in the basic BoW model, and provides a semantically more mean-

ingful image representation. Moreover, a lower dimensional latent space speeds

up computation: for example, the time complexity of a Support Vector Machine

(SVM) is linear in the dimension of the feature space. Finally, it is unclear that

the success of the basic BoW model would scale to very large problems, containing

both large image corpuses and a large number of scene categories. In fact, this

has been shown not to be the case in text-retrieval, where it is now well estab-

lished that a flat representation is insufficient for large scale systems, and the use

of intermediate latent spaces leads to more robust solutions [58, 14]. However, a

direct translation of these methods to computer vision has always incurred a loss

in performance, and latent models have not yet been shown to be competitive with

the flat BoW representation [83, 74].

In this chapter we propose an alternative solution, based on semantic im-

age representation. Like the latent model approaches we introduce an intermediate

space - the semantic space, however, instead of learning the themes in an unsu-

pervised manner from the BoW representation as is done in existing works, the

1In the literature the terms “textons”, “keypoints”, “visterms”, “visual-terms” or “visterms”
have been used with approximately the same meaning, i.e. mean vectors of the clusters in a
high-dimensional space.
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semantic themes are explicitly defined and the images are casually annotated with

respect to their presence. This can always be done since, in the absence of “the-

matic” annotations, the “themes” can be made equal to the class labels, which are

always available. The number of semantic themes used defines the dimensional-

ity of the intermediate theme space, henceforth referred to as “semantic space”.

Each theme induces a probability density on the space of low-level features, and

the image is represented as the vector of posterior theme probabilities. An imple-

mentation of this approach is presented and compared to existing algorithms on

benchmark datasets. It is shown that the proposed low dimensional representation

outperforms the unsupervised latent-space approaches, and achieves performance

close to the state of the art, previously only accessible with the flat BoW repre-

sentation using a much higher dimensional image representation.

The paper is organized as follows. Section 4.2 discusses related work. Sec-

tion 4.3 presents the approach now proposed, and Section 4.4 an empirical evalu-

ation on benchmark datasets, allowing comparison to previous results.

4.2 Related Work

Low dimensional representations for scene classification have been studied in

[77, 113, 16, 83]. On one hand, it is noticed that increasing the size of the codebook

improves classification performance[102]. Csurka et al. [27] compare different

codebook sizes ranging from 100 to 2500 visual-words, showing that performance

degrades monotonically as size decreases. They choose a size of 1000, based on

a trade-off between accuracy and speed. Quelhas et al. [113] also experience a

monotonic degradation of performance for 3-class classification, and use a codebook

of 1000 visual-words. In [74], Lazebnik et al. show that performance increases when

codebook size is increased from 200 to 400 visual-words.

On the other hand, there is a strong desire for low dimensional represen-

tations, for the benefits elucidated in Section 4.1. This is achieved by resorting

to techniques from the text-processing literature, such as Latent Dirichlet Alloca-

tion (LDA) [14], Probabilistic Latent Semantic Analysis (pLSA) [58] etc., which
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produce an intermediate latent “theme” representation. Fei-Fei et al. [77] moti-

vate the use of intermediate representations, citing the use of “textons” in texture

retrieval. They then propose two variations of LDA to generate the intermediate

theme representation. In [113], Quelhas et al. use pLSA, to generate the compact

representation. They argue that pLSA has the dual ability to generate a robust, low

dimensional scene representation, and to automatically capture meaningful scene

aspects or themes. pLSA is also used by Bosch et al. in [16]. Another approach to

two-level representation based on the Maximization of Mutual Information (MMI)

is presented in [83]. However, a steep drop in classification performance is often

experienced as a result of dimensionality reduction [83, 74].

4.3 Proposed Approach

A scene classification system can be broadly divided into two modules. The

first defines the image representation, while the second delineates the classifier

used for decision making. Since the main goal of this thesis is to present a low-

dimensional semantic theme representation, we do not duel on the choice of clas-

sifier, simply using an SVM. This is the standard choice in the scene classification

literature [166, 102, 27].

Semantic Theme Representation

Under the proposed classification framework, an image is represented by its

semantic multinomial (SMN). This is similar in principle to the two level image

representations of [77, 113, 16], where an intermediate “theme” space is learned in

an unsupervised fashion. In the proposed formulation the semantic space serves

as the surrogate for the intermediate “theme” space. As discussed in Chapter

2, learning a semantic space requires a vocabulary of semantic concepts L and a

dataset annotated with respect to L. These semantic concepts serve the same role

as the intermediate “themes” in the existing work[77, 113, 16]. In general, semantic

concepts or “themes” are different from image classes. For example, images in the

“Street” class of Figure 4.2i contain themes such as “Road”, “Sky”, “People”, or
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Figure 4.1: The proposed scene classification architecture.

“Cars”. However, current popular scene classification datasets lack such semantic

theme annotations and in the absence of these, the set of scene categories W =

{1, . . . , K}, e.g. “Street”, can serve as a proxy for L. In this case, each image is only

explicitly annotated with one “theme”, even though it may depict multiple: e.g.

most images in the “Street” class of Figure 4.2i also depict “Buildings”. We refer

to this limited type of scene labeling as casual annotation. This is the annotation

mode for all results reported in this paper, to enable comparison to previous scene

classification work. We will see that supervised learning of the intermediate theme

space with casual annotations can be far superior to unsupervised learning of a

latent theme space, as previously proposed [77].

Scene Classification

Due to the limited information contained in casual annotations, images

cannot be simply represented by the caption vectors ci. In fact, ci is only available

for training images, and ci,j = 0 does not mean that the ith image does not contain

the jth theme, simply that it was not annotated with it. Instead, the proposed

classification system represents images by vectors of theme frequency, or counts.

In this way, an image can be associated with multiple themes, even when there are

no multiple associations in the labels used for training. As shown in Figure 4.1,

the scene classifier (e.g. SVM) then operates on this feature space.
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4.4 Experimental evaluation

We now present an empirical evaluation of the model as a low dimensional

semantic theme representation for two publicly available datasets, comparing per-

formance with [83, 16, 77, 74]. We also present a study of classification accuracy

as a function of semantic space dimensions.

4.4.1 Datasets

Scene classification results are presented on two public datasets: 1) Natu-

ral15 [74] and 2) Corel50 photos, used in [21] for image annotation comprising of

50 scene categories. The details of these datasets are discussed in Appendix A.1.1

and Appendix A.1.3 respectively. The use of the Natural15 dataset allow us to

directly compare with the existing results on scene classification. In particular,

we show a comparison of our results using low-dimensional representation with

those of [83, 74, 77, 16]. The Corel50 dataset has 100 high resolution images per

category, which we resize to an average of 180×120 pixels. To the best of our

knowledge, this is the database with maximum number of scene categories so far

studied in the literature (viz. 50). Since the dimension of our semantic theme

representation directly depends on the number of scene categories (see Sec. 4.3),

this dataset enables the study of the effects of dimensionality as the number of

categories grows.

4.4.2 Experimental Protocol

At the low level, images are represented as bags of 8×8 vectors of discrete co-

sine transform (DCT) coefficients sampled on a uniform grid. The Corel50 dataset

consists of color images which are converted from RGB to YcrCb colorspace 2. The

Natural15, consist of grayscale images hence no such conversion is required. Se-

mantic theme densities are learned on a 36(out of 64) / 64(out of 192) dimensional

subspace of the DCT coefficients for Natural15 and Corel50 dataset respectively,

2We also conducted experiments with the CIE lab colorspace and the results are almost
similar.
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with each theme modeled as a mixture of 128 Gaussian components. The images

at the semantic theme level are represented by 15 (50) dimensional theme vectors

for Natural15 (Corel50). Later on, we also show that not all 50 themes are equally

informative on Corel50. 100 (90) images per scene are used to learn the theme

density for Natural15 (Corel50), and the rest of the images are used as the test

set. All experiments on Natural15 are repeated 5 times with different randomly

selected train and test images. For Corel50 dataset, we use the same training and

test images as used in [21, 35]. A multi-class SVM using one-vs-all strategy with

Gaussian kernel is used for classification, with the parameters obtained by 3-fold

cross validation.

4.4.3 Results

We start by studying scene classification accuracy.

Scene classification

Figure 4.2 shows an example from each of the fifteen scene categories of

Natural15, along with their semantic theme representation. All images shown

are actually classified correctly by the classifier. Two interesting observations can

be made: 1) semantic theme vectors do capture the different semantic meanings

of the images, hence correlating well with human perception. For example, the

theme vector shown for the scene from the category “Forest” in Figure 4.2n, has

large weights for themes such as “forest”, “mountain” and “open-country”, which

are suitable themes for the scene, and 2) in many examples (viz. Figure 4.2(d)-

(f),(h),(i)), even though the semantic theme corresponding to the same semantic

scene category does not have the highest probability, the scene is still classified

correctly. For example in Figure 4.2i, in spite of the “street” theme having much

lower probability than “tall-building”, “inside-city”, “highway”, the image is clas-

sified as belonging to the “Street” category. This is a direct consequence of the

classifier learning associations between themes, despite the casual nature of the

annotations. Figure 4.4 presents some of the misclassified images from the worst

performing scene categories, along with the scene category they are classified into.
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Figure 4.2: Theme vectors from each of the scenes of fifteen scene categories.
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Figure 4.2: Theme vectors from each of the scenes of fifteen scene categories.

(continued)
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Figure 4.2: Theme vectors from each of the scenes of fifteen scene categories.

(continued)
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Figure 4.3: Confusion Table for our method using 100 training image and rest as

test examples from each category of Natural15. The average performance is 72.2%

± 0.2

The confusion table for Natural15 is shown in Figure 4.3. The average clas-

sification accuracy, over all categories is 72.2 ± 0.2%. As was experienced by [74],

there is confusion between indoor categories such as “Bedroom”, “Livingroom”

and “Kitchen” and outdoor categories like “Opencountry” and “Mountain”. In

fact close to 25% of images from the category “Bedroom” were classified as “Liv-

ingroom”. On Corel50, the classification accuracy stands at 56.8%, the chance

classification accuracy being 2%. Figure 4.5 shows some of the images from var-

ious scene categories of Corel50 dataset. Also shown in Figure 4.6 is the theme

vector for the image of Figure 4.5(a).
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Comparison with existing work

4.1 compares the classification accuracy of the proposed method on Natu-

ral15, using 15 dimensional theme vectors, with the existing results in the litera-

ture. It is evident that when compared to the MMI based dimensionality reduction

of Liu et at. [83], which achieves a rate of 63.32% using a 20 dimensional space, the

method performs substantially better, achieving a rate of 72.2% on an even lower

dimensional space of 15 themes. The performance is equal to that of Lazebnik et

al. [74]3, who represent images as the basic BoW model, using 200 visual-words.

A similar comparison on the thirteen subcategories of the dataset used in [77, 16],

is presented in 4.1. Again, the proposed low-dimensional theme vector based rep-

resentation performs close to the best results in the literature, with a much lower

dimensional space. This dataset also shows that the proposed method substantially

outperforms the latent-space method of Fei-Fei et al. [77], and achieves equivalent

performance the latent-space method of Bosch et al. [16] with roughly half of its

dimensionality.

Informative semantic themes

In all the experiments conducted above, scene categories served as a proxy

for the intermediate themes. This is a practical approach to scene classification

where the images are devoid of other annotations. However, it might seem that

the extension of the current framework to very large-scale problems involving thou-

sands of categories, will annul the benefits gained by the proposed representation,

as the dimension of the semantic space would grow with the number of categories.

The effects of varying the dimensions of the semantic space on the classification

accuracy is studied, on Corel50 dataset. Semantic spaces of k dimensions were

produced by ordering the semantic themes by the variance of their posterior prob-

abilities, and selecting the k of largest variance (for k ranging from 2 to 50). Clas-

3Note that the best results on this dataset, are obtained by incorporating spatial informa-
tion, and representing images as histograms at different spatial resolution, with Spatial Pyramid
Matching [74]. The accuracy is 81.1%, with a 4200 dimensional feature space. Multi-resolution
semantic representations would also be possible with the proposed method, as well as the in-
corporation of spatial information, but these extensions are beyond the scope of the current
discussion.
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Figure 4.4: Some images from worst performing scene categories in Natural15.

(→) implies the scene category the image is classified into.

sification was performed on each of these resulting spaces and Figure 4.7 presents

the performance as a function of the dimension. It can be observed that not all of

the 50 dimensions are equally informative, as moving from 40 to 50 dimensions in-

creases performance by only 3.8% (a relative gain of 6.7%). This can be explained
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Figure 4.5: Some images from the Corel50 dataset. (→) implies the scene cat-

egory the image is classified into. (a) and (b) show two examples of correctly

classified images, (c) and (d) two reasonably misclassified images and (e) and (f)

shows two examples of error.
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Figure 4.6: The theme vector for the image in Figure 4.5(a).

by the plot of variance of the posterior probabilities for the 50 themes (in the same

figure). For very large scale problems, where most of the variance is expected to be

captured by a subset of the features, the correlation of classification performance

with the variance of the themes indicates that the number of informative themes
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Figure 4.7: Classification performance as a function of the semantic space dimen-

sions. Also shown, is the growth of the variance of the semantic themes, scaled

appropriately.

Table 4.1: Classification Result for 15 scene categories.

Method Dimensions Classification

Accuracy

Our method 15 72.2 ± 0.2

Liu et al. [83] 20 63.32

Liu et al. [83] 200 75.16

Lazebnik et al. [74] 200 72.2 ± 0.6

would grow sub-linearly as the number of scene categories is increased. It is un-

clear that this type of behavior will hold for the flat BoW representations. In the

works previously presented in the literature, the codebook has linear size on the

number of classes.

The results presented above allow a number of conclusions. While low di-

mensional semantic representations are desirable for the reasons discussed in Sec-

tion 4.1, previous approaches based on latent-space models have failed to match

the performance of the flat BoW model, which has high dimensionality. We have

shown that this is indeed possible, with methods that have much lower complex-

ity than the latent-space approaches previously proposed, but make better use of
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Table 4.2: Classification Result for 13 scene category subset.

Method Dimensions Classification

Accuracy

Our method 13 72.7 ± 0.3

Bosch et al. [16] 25 73.4

Fei-Fei et al. [77] 40 65.2

Lazebnik et al. [74] 200 74.7

the available labeling information. We have also shown that the proposed method

extracts meaningful semantic image descriptors, despite the casual nature of the

training annotations, and is able to learn co-occurrences of semantic themes with-

out explicit training for these. Finally a study of the effect of dimensionality on

the classification performance was presented, and indicated that the dimensional-

ity would grow sub-linearly with the number of scene categories. This could be a

significant advantage over the flat BoW model which, although successful for the

limited datasets in current use, will likely not scale well when the class vocabulary

increases.
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