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In this chapter we discuss some of the drawbacks of the proposed semantic

image representation and introduce the framework of “holistic context modeling”

that, while addressing these drawbacks, yields robust visual recognition systems.

6.1 Introduction

Recent psychophysics studies have shown that humans rarely guide recog-

nition exclusively by the appearance of the concepts to recognize. Most frequently,

appearance is complemented by the analysis of contextual relationships with other

visual concepts in the field of view [10]. In general, the detection of a concept of

interest (e.g. buildings) is facilitated by the presence, in the scene, of other con-

cepts (e.g. street, city) which may not themselves be of interest. Psychophysical

studies have shown that context can depend on multiple clues. For example, ob-

ject recognition is known to be affected by properties such as support (objects do

not float in the air), interposition (objects occupy different volumes), probability

(objects appear in different scenes with different probabilities), position (objects

appear in typical locations), and size (objects have typical relative sizes) [10].

In this chapter, we investigate an approach to context modeling based on

the probability of co-occurrence of objects and scenes. This modeling is quite

simple, and builds upon the semantic representation of the images introduced in

Chapter 2. Semantic image representation itself builds upon the bag-of-features

(BoF) representation (see Chapter 2 for details regarding BoF representation),

thereby inheriting several of its benefits. Most notably, it is strongly invariant

to scene configurations, an essential attribute for robust scene classification and

object recognition, and has low complexity, a property that enables large training

sets and good generalization. Its main advantage over BoF is a higher level of

abstraction, which can lead to substantially better generalization — as established

in Chapter 3, by comparing the performance of nearest-neighbors classification in

an image retrieval context. However, the semantic representation also has some

limitations that can be traced back to the BoF representation itself. Most notable

among these is a certain amount of contextual noise, i.e., noise in the probabilities
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that compose the SMN. This is usually not due to poor statistical estimation,

but due to the intrinsic ambiguity of the underlying BoF representation. Since

appearance based features have small spatial support, it is frequently difficult to

assign them to a single visual concept. Hence, the SMN extracted from an image

usually assigns some probability to concepts unrelated to it (e.g. the concepts

“bedroom” and “kitchen” for the “street” image of Figure 6.1).

Thus, while the SMN representation captures co-occurrences of the seman-

tic concepts present in an image, not all these correspond to true contextual rela-

tionships. In fact, we argue that many (e.g. “bedroom” and “kitchen” in Figure

6.1) are accidental, i.e., casual coincidences due to the ambiguity of the underly-

ing appearance representation (image patches that could belong to either a bed

or a kitchen counter). Rather than attempting to eliminate contextual noise by

further processing of appearance features, we propose a procedure for robust infer-

ence of contextual relationships in the presence of accidental co-occurrences. The

idea is to keep the robustness of the appearance representation, but perform the

classification at a higher level of abstraction, where ambiguity can be more easily

detected.

This is achieved by introducing a second level of representation, that op-

erates in the space of semantic features. The intuition is that, in this space,

accidental co-occurrences are events of much smaller probability than true contex-

tual co-occurrences: while “street” co-occurs with “buildings” in most images, it

accidentally co-occurs with “bedroom” or “kitchen” in a much smaller set. True

contextual relationships can thus be found by identifying peaks of probability in

semantic space. Each visual concept is modeled by the distribution of the posterior

probabilities extracted from all its training images. This distribution of distribu-

tions is referred as the contextual model for the concept. For large enough and

diverse enough training sets, these models are dominated by the probabilities of

true contextual relationships. Minimum probability of error (MPE) contextual

classification can thus be implemented by simple application of Bayes’ rule. This

suggests representing images as vectors of posterior probabilities under the contex-

tual concept models, which we denote by contextual multinomials (CMN). These
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are shown much less noisier than the SMNs learned at the appearance level.

An implementation of contextual modeling is proposed, where concepts are

modeled as mixtures of Gaussian distribution on appearance space, and mixtures

of Dirichlet distributions on semantic space. It is shown that 1) the contextual

representation outperforms the appearance based representation, and 2) this holds

irrespectively of the choice and accuracy of the underlying appearance models. An

extensive experimental evaluation, involving the problems of scene classification

and image retrieval shows that, despite its simplicity, the proposed approach is

superior to various contextual modeling procedures in the literature.

The chapter is organized as follows. Section 6.2 briefly reviews the literature

on context modeling. Section 6.3 then discusses the limitations of semantic image

representation built upon appearance classifiers and introduces contextual models.

An extensive experimental evaluation of contextual modeling is then presented in

Section 6.4, Section 6.5, and Section 6.6.

6.2 Related Work on Context Modeling

Recent efforts towards context based recognition can be broadly grouped

in two classes. The first, an object-centric approach, consists of methods that

model contextual relationships between sub-image entities, such as objects. Ex-

amples range from simply accounting for the co-occurrence of different objects

in a scene [115, 43], to explicit learning of the spatial relationships between ob-

jects [47, 174], or an object and its neighboring image regions [57]. Methods in

the second class adopt a scene-centric representation, whereby context models are

learned from entire images, generating a holistic description of the scene or its

“gist” [104, 166, 77, 105, 74]. Various recent works have shown that semantic

descriptions of natural images can be obtained with these representations, with-

out explicit image segmentation [104]. This is consistent with evidence from the

psychology [103] and cognitive neuroscience [3] literatures.

The scene-centric representation has itself been explored in two ways. One

approach is to equate context to a vector of statistics of low-level visual measure-
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ments taken over the entire image. For example, [104] models scenes according to

the differential regularities of their second order statistics. A second approach is to

rely on the BoF/BoW representation. Here, low-level features are computed locally

and aggregated across the image, to form a holistic context model [166, 77, 121].

Although these methods usually ignore spatial information, some extensions have

been proposed to weakly encode the latter. These consist of dividing the image

into a coarse grid of spatial regions, and modeling context within each [104, 74].

The proposed context modeling combines aspects of both the object-centric

and scene-centric strategies. Like the object-centric methods, we exploit relation-

ships between co-occurring semantic concepts in natural scenes to derive contextual

information. This is, however, accomplished without demarcating individual con-

cepts or regions in the image. Instead, all conceptual relations are learned through

global scene representations. Moreover, these relationships are learned in a purely

data-driven fashion, i.e. no external guidance about the statistics of high-level con-

textual relationships is required, and the representation consists of full probability

distributions, not just statistics. The proposed representation can be thought as

modeling the “gist” of the scene by the co-occurrences of semantic visual concepts

that it contains.

The representation closest to that now proposed is probably the family of

latent topic models, recently popular in vision [77, 114, 17]. These models were

originally proposed in the text literature, to address the ambiguity of BoW. It

was realized that word histograms cannot account for polysemy (the same word

may represent different meanings) and synonymy (different words may represent

same meaning) [14, 58]. This led to the introduction of intermediate latent rep-

resentations, commonly known as “themes” or “topics”. Borrowing from the

text literature, several authors applied the idea of latent spaces to visual recogni-

tion [12, 4, 129, 140, 77, 114, 17]. The rational is that images which share frequently

co-occurring features have a similar representation in the latent space. Although

successful for text, the benefits of topic discovery have not been conclusively estab-

lished for visual recognition. In fact, a drop in classification performance is often

experienced when unsupervised latent representations are introduced [83, 114, 74].
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This issue is discussed in detail in the next chapter, where we argue that un-

supervised topic discovery is not a good idea for recognition and show that the

architecture now proposed can be interpreted as a modified topic model, where

the topics are pre-specified and learned in a weakly supervised manner. This is

shown to increase the recognition performance.

The use of appearance based classifier outputs as feature vectors has also

been proposed in [120, 169, 147]. In these works a classifier is first learned for

a given keyword vocabulary — [169, 147] learn discriminative classifiers from

flickr/bing images, [120] learns a generative model using a labeled image set

— and the outputs of these classifiers are then used as feature vectors for a second

layer of classification. In these works, classifier outputs are simply used as an alter-

native low dimensional image representation, without any analysis of their ability

to model context. We discuss the limitations of using appearance models for con-

text modeling and introduce “contextual models” that address these limitations.

We also present extensive experimental evidence supporting the benefits of these

higher level models, and show that they achieve higher classification accuracies on

benchmark datasets.

6.3 Semantics-based Models and Context Multi-

nomials

6.3.1 Limitations of Semantic Representations

One major source of difficulties is that semantic models built upon the BoF

representation of appearance inherit the ambiguities of the latter. There are two

main types of ambiguity. The first is that contextually unrelated concepts (for ex-

ample smoke and clouds) can have similar appearance representation under BoF.

The second is that the resulting semantic descriptors can account for contextual

frequencies of co-occurrence, but not true contextual dependencies. These two

problems are illustrated in Figure 6.1. First, image patches frequently have am-

biguous interpretation. When considered in isolation, they can be compatible with
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Figure 6.1: An image from the “street” class of the N15 dataset (See 6.4.1) along

with its SMN. Also highlighted are the two notions of co-occurrence. Ambiguity

co-occurrences on the right: image patches compatible with multiple unrelated

classes. Contextual co-occurrences on the left: patches of multiple other classes

related to “street”.

many concepts. For example it is unclear that even a human could confidently

assign the patches shown on the right of Figure 6.1 to the “street” concept, with

which the image is labeled. Second, appearance-based models lack information

about the interdependence of the semantics of the patches which compose the im-

ages in a class. For example, the fact that, as shown on the left, images of street

scenes typically contain patches of street, car wheels, and building texture.

We refer to these two observations as co-occurrences. In the first case, a

patch can accidentally co-occur with multiple concepts (the equivalent to polysemy

in text analysis). In the second, patches from multiple concepts typically co-occur

in scenes of a given class (the equivalent to synonymy for text). While only the

co-occurrences of the second type are indicative of true contextual relationships,

SMNs learned from appearance models capture both types of co-occurrences. This

is again illustrated by the example of Figure 6.1. On one hand, the displayed SMN

reflects the ambiguity that sometimes exists between patches of “street scenes” and

“bedrooms”, “kitchens” or “living rooms”. These are all man-made structures
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which, for example, contain elongated edges dues to buildings, beds, furniture,

etc. Note that all classes that typically do not have such structures (e.g. natural

scenes such as “mountain”, “forest”, “coast”, or “open country”) receive close

to zero probability. On the other, the SMN reflects the likely co-occurrence, in

“street scenes”, of patches of “inside city”, “street”, “buildings”, and “highway”.

In summary, while SMN probabilities can be interpreted as semantic features,

which account for co-occurrences due to both ambiguity and context, they are not

purely contextual features.

One possibility to deal with the ambiguity of the semantic representation

is to explicitly model contextual dependencies. This can be done by introduc-

ing constraints on the appearance representation, by modeling constellations of

parts [42, 40] or object relationships [146, 47]. However, the introduction of such

constraints increases complexity, and reduces the invariance of the representation,

sacrificing generalization. A more robust alternative is to keep BoF, but repre-

sent images at a higher level of abstraction, where ambiguity can be more easily

detected. This is the strategy pursued in this work, where we exploit the fact

that the two types of SMN co-occurrences have different stability , to extract more

reliable contextual features.

6.3.2 From Semantics to Context

The basic idea is that, while images from the same concept are expected

to exhibit similar contextual co-occurrences, this is not likely for ambiguity co-

occurrences. Although the “street scene” of Figure 6.1 contains some patches that

could also be attributed to the “bedroom” concept, it is unlikely that this will hold

for most images of street scenes. By definition, ambiguity co-occurrences are acci-

dental , otherwise they would reflect common semantics of the two concepts, and

would be contextual co-occurrences. Thus, while impossible to detect from a single

image, stable contextual co-occurrences should be detectable by joint inspection

of all SMNs derived from the images of a concept.

This is accomplished by extending concept modeling by one further layer

of semantic representation. As illustrated in Figure 6.2, each concept k is modeled
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Figure 6.2: Learning the contextual model for the “street” concept, (6.1), on

semantic space S, from the set of all training images annotated with “street”.

by the probability distribution of the SMNs derived from all training images in its

training set, Dk. We refer to this SMN distribution as the contextual model for

k. If Dk is large and diverse, this model is dominated by the stable properties of

the features drawn from concept k. In this case, the features are SMNs and their

stable properties are the true contextual relationships of k. Hence, concept models

assign high probability to regions of the semantic space occupied by contextual

co-occurrences, and small probability to those of ambiguity co-occurrences.

For example, since streets typically co-occur with buildings, the contextual

model for “street” assigns high probability to SMNs that include both concepts.

On the other hand, because “street” only co-occurs accidentally with “bedroom”,

SMNs including this concept receive low-probability. Hence, representing images

by their posterior distribution under contextual models emphasizes contextual co-

occurrences, while suppressing accidental coincidences due to ambiguity. As a

parallel to the nomenclature of Chapter 2, we refer to the posterior probabilities

at this higher level of abstraction as contextual features, the probability vector

associated with each image as a contextual multinomial distribution, and the space

of such vectors as the contextual space.

6.3.3 Contextual Concept Models

Contextual concept models are learned in the semantic space S. Under the

most general formulation, concepts are drawn from a random variable K defined
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on the index set k ∈ {1, . . . , K} of a concept vocabulary K. In this work, we

assume that this vocabulary is the concept vocabulary L used in visual space X , i.e.

K = L. Note that this assumption implies that if L is composed of scenes (objects),

then the contextual models account for relationships between scenes (objects). A

trivial extension would be to make concepts on semantic space S different from

those on visual space X , promoting a concept hierarchy. For example, K could

be defined on the vocabulary of scenes, K = {‘desert′, ‘beach′, ‘forest′} and W

on objects, L = {‘sand′, ‘water′, ‘sky′, ‘trees′}. In this way, scenes in K would be

naturally composed of objects in L, enabling the contextual models to account for

relationships between scenes and objects. This would, however, require training

images (weakly) labeled with respect to both L and K. We do not pursue such

hierarchical concept taxonomies in what follows.

Since S is itself a probability simplex, one natural model for a concept k in

S is the mixture of Dirichlet distributions

PΠ|K(π|k; Λk) =
∑

m

βkmDir(π; αk
m). (6.1)

This model has parameters Λk = {βkm,αk
m}, where βm is a probability mass

function (
∑

m β
k
m = 1). Dir(π; α) a Dirichlet distribution of parameter α =

{α1, . . . , αL},

Dir(π; α) =
Γ(
∑L

i=1 αi)
∏L

i=1 Γ(αi)

L
∏

i=1

(πi)
αi−1 (6.2)

and Γ(.) the Gamma function. As illustrated in Figure 6.2, the parameters Λk

are learned from the SMNs π of all images in Dk, i.e. the images annotated with

the kth concept in L. Learning is implemented by maximum likelihood estima-

tion, using the generalized expectation-maximization (GEM) algorithm discussed

in Appendix B.

Figure 6.3 shows an example of a 3-component Dirichlet mixture learned

for the semantic concept “street”, on a three-concept semantic space. This model

is estimated from 100 images (shown as data points on the figure). Note that,

although some of the image SMNs exhibit ambiguity co-occurrences with the “for-

est” concept, the Dirichlet mixture is strongly dominated by the true contextual



125

street

forest
store

0

0.05

0.1

Figure 6.3: 3-component Dirichlet mixture learned for the concept “street”. Also

shown, as “*”, are the SMNs associated with each image. The Dirichlet mixture

assigns high probability to the concepts “street” and “store”.

co-occurrences between the concepts “street” and “store”. This is an illustration

of the ability of the model to lock onto the true contextual relationships.

6.3.4 Contextual Space

The contextual models PΠ|K(π|k) play, in semantic space S, a similar role to

that of the appearance models PX|W (x|w) in visual space X . It follows that MPE

concept detection, on a test image I of SMN π = {π1, . . . , πL}, can be implemented

with a Bayes decision rule based on the posterior concept probabilities

PK|Π(k|π) =
PΠ|K(π|k)PK(k)

PΠ(π)
. (6.3)

This is the semantic space equivalent of (2.8) and, once again, we assume a uniform

concept prior PK(k).

As in Chapter 2, it is also possible to design a new semantic space, by

retaining all posterior contextual concept probabilities θk = PK|Π(k|π). We denote

the vector θ = (θ1, . . . , θK)T as the contextual multinomial (CMN) distribution of

image I. As illustrated in Figure 6.4, CMN vectors lie on a new probability

simplex C, here referred to as the contextual space. In this way, the contextual

representation establishes a mapping from images in X to CMNs θ in C. In 6.4 we

show that CMNs are much more reliable contextual descriptors than SMNs.
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Figure 6.4: The Contextual multinomial (CMN) of an image as the vector of

co-occurrence probabilities of contextually related concepts.

6.3.5 Data Augmentation

It should be noted that, similar to learning the semantic representation, this

architecture is generic, in the sense that any appearance recognition system that

produces a vector of posterior probabilities π, can be used to learn the proposed

contextual models. However, when as above, an SMN is computed per image, the

number of training images upper bounds the cardinality of the training set for

contextual models. Since there is usually a limited number of labeled images per

concept, this can lead to over fitting. For example, the 100 images available per

concept on N15 are sufficient to learn appearance models (each image contains

thousands of patches), but 100 SMNs do not suffice to learn Dirichlet mixtures

in a 15 dimensional space. One possibility is to use the patch-SMNs, π(n) (see

Section 2.3), which are abundant. These, however, tend to be too noisy, due to

the ambiguities discussed above. To overcome this problem we resort to a middle

ground between patch-SMNs and image-SMNs: multiple SMNs are estimated per

image, from random patch subsets. More precisely, a set of patches is first selected,

randomly, from the image. An SMN is then estimated from this set, as would be

done if the image consisted of these patches alone. The process is repeated with

different patch subsets, generating a number of SMNs per image. By controlling

the number of random sets, it is possible to control the cardinality of the training

set for each contextual model. The use of random patch subsets simultaneously

alleviates the problems of data scarcity (many subsets can be drawn per image),
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and estimation noise (each SMN pools information from multiple patches). More-

over, similar to the learning of appearance models, learning contextual models

with data augmentation also relies on the multiple instance learning paradigm

where each image, being a collection of SMNs, serves as the positive bag, with

some SMNs depicting true contextual co-occurrences and some others ambiguity

co-occurrences. In 6.5.1, we show that this data augmentation strategy leads to

significant improvements in classification accuracy.

6.4 Experimental Setup

In this section, we describe the experimental setup used to evaluate perfor-

mance of the proposed contextual modeling. The evaluation consists of two vision

tasks, viz. scene classification and image retrieval.

6.4.1 Datasets

To test the proposed contextual modeling framework, we adopt datasets

previously used in the scene classification and image retrieval literatures.

Scene Classification

Scene classification results are presented for two publicly available datasets

viz. “Natural Scene Categories” and “Corel Image Collection”.

Natural Scene Categories (N15, N13, N8) We present results on all three

subsets of the “Natural Scene Categories” dataset, viz. Natural15 (N15), Natural13

(N13) and Natural8 (N8). These dataset allows direct comparison with published

results on scene classification. To learn the concept models, 100 images per scene

are used, the remaining being used as test set. All experiments are repeated six

times, with random train/test splits. A detailed description of these datasets are

provided in Appendix. A.1.1.

Corel Image Collection (C50, C43) We also present results of the “Corel

Image Collection” which has much higher number of classes as compared to the

“Natural Scene Categories” dataset. We construct two different datasets from this
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collection, viz. Corel50 (C50) and Corel43(C43) with 50 and 43 classes respectively.

For C50, 90 images from each CD are used to learn class models and the remaining

for testing. For C43, 90 images per label are used to learn the class models and

the remainder are used for testing. All images were normalized to size 181×117 or

117×181 and converted from RGB to the YBR color space. A detailed description

of these datasets are provided in Appendix. A.1.3.

Image Retrieval

To evaluate retrieval performance, we use two datasets introduced in [119].

Corel Image Collection (C15) consists of 1, 500 images from another 15 Corel

Stock Photo CDs, divided into a retrieval set of 1, 200 images and a query set of

300 images. CD themes are used as the ground truth image concepts, creating a

15-dimensional semantic and contextual space. A detailed description of C15 is

provided in Appendix. A.1.3.

Flickr Images (F18) consists of 1, 800 images from www.flickr.com divided into

18 classes resulting in an 18 dimensional semantic and contextual space. A set of

1, 440 images serves as the retrieval dataset, and the remaining 360 as the query

set. A detailed description of F18 is provided in Appendix. A.1.4.

Note that, for all datasets except C43, each image is explicitly annotated

with just one concept, even though it may depict multiple. Thus, the co-occurrence

information learned from these datasets is purely data driven. In C43, although

multiple annotations are available per image, their co-occurrences are not explicitly

used to learn context. In summary, no high level co-occurrence information is used

to train the contextual models.

6.4.2 Appearance Features

Both SIFT and DCT features are used for appearance representation. SIFT

features are computed either by interest point detection, SIFT-INTR, or on a

dense regular grid SIFT-GRID. The two strategies yield about 1000 samples per

image. DCT features are computed on a dense regular grid, with a step of 8

pixels. 8 × 8 image patches are extracted around each grid point, and 8 × 8
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Table 6.1: Impact of inference model on classification accuracy.

Classification Accuracy (%)

Model Appearance Contextual

Image RandomPatch

Figure 2.1, Eq (2.8) 71.67 ± 1.17 71.67 ± 1.17 -

Figure 2.5(a), Eq (2.21) 71.67 ± 1.17 73.33 ± 0.69 77.20 ± 0.39

Figure 2.5(b), Eq (2.23) 54.97 ± 0.58 73.43 ± 0.99 75.14 ± 0.75

DCT coefficients computed per patch and color channel. For monochrome images

this results in a feature space of 64 dimensions. For color images the space is

192 dimensional. In this case, appearance distributions are learned in the 129

dimensional subspace composed of the first 43 DCT coefficients from each channel.

For datasets exclusively comprised of color images, only the DCT features are used.

6.5 Results

A number of classification experiments were performed (N15 dataset) to

evaluate the impact of the various parameters of the proposed contextual repre-

sentation on recognition performance.

6.5.1 Designing the Semantic Space.

In Section 2.3, we discussed three strategies to compute Image-SMNs. 6.1

reports their classification accuracy, for both appearance and contextual modeling

with SIFT-GRID. Contextual models learned from SMNs computed with (2.8) fail

to improve upon the (already high performing) appearance classifiers. This is not

totally surprising, since these SMNs lack co-occurrence information (see discussion

of Section 2.3). In comparison, SMNs computed with (2.21) or (2.23) are rich

in such information, enabling contextual models to outperform their appearance

counterparts.
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Note that, although the LDA-like inference algorithm of (2.23) yields signif-

icantly lower classification performance at the appearance level than that of (2.21),

both strategies attain a classification accuracy of ∼ 73.3% at the contextual level.

Note also that, despite much weaker performance at appearance-level than (2.8),

(2.23) performs substantially better at the contextual level. Together, these results

suggest that the recognition performance at the appearance level is not necessarily

a good predictor of performance at the contextual level. In particular, the relative

performances of the three inference procedures advise against inference procedures

that make hard decisions at the lower levels of recognition.

To increase the cardinality of the training sets used for contextual modeling,

800 random sets of 30 patches are sampled per image, yielding 800 patch-SMNs

per image. Image-SMNs are then computed from these, with (2.21) or (2.23).

6.1 reports the benefits of this data augmentation, showing that performance im-

proves in both cases. For (2.21) classification accuracy improves from 73.33% to

77.20%, for (2.23) from 73.43% to 75.14%. Since (2.23) involves an iterative pro-

cedure, which is more expensive than the closed form of (2.21), and has weaker

performance, we use (2.21) in the remaining experiments.

6.5.2 Number of Mixture Components

Figure 6.5(a) presents the classification performance as a function of the

number of contextual mixture components, for SIFT-GRID, SIFT-INTR and DCT

features. In all cases, a single Dirichlet distribution is insufficient to model the se-

mantic co-occurrences of N15. As the number of mixture components increases

from 1 to 8, performance rises substantially for SIFT (e.g. from 72.58% to 76.13%

for SIFT-GRID), and dramatically (from 55.93% to 70.48%) for the DCT. Above

8 components, the gain is moderate in all cases, with a maximum accuracy of

77.20% for SIFT-GRID and 73.05% for the DCT. Figure 6.6 shows the cluster cen-

ters learned with a four-component Dirichlet mixture using DCT features, for the

“street” and “forest” classes. These cluster centers can be interpreted as the SMNs

of the dominant co-occurrence patters learned for these classes. Two interesting

observations can be made. First, the class mixtures indeed account for different
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Figure 6.5: (a) Classification accuracy as a function of the number of mixture

components of the contextual class distributions, for both DCT and SIFT. (b)

Dependence of appearance and contextual classification on the accuracy of the

appearance modeling for SIFT-GRID features, (c) for DCT features. The perfor-

mance of contextual classification remains fairly stable across the range of appear-

ance models.

co-occurrence patterns: in both cases the four cluster centers are quite distinct.

Second, not all cluster centers assign high probability to the feature vector which

is namesake of the class. In the “street” example, although one of the centers

assigns high probability to the “street” concept, the remaining ones assign higher

probability to alternative concepts, e.g. “tall building”, “inside city”, “highway”

etc. than to “street” itself.
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Figure 6.6: Four cluster centers for the class “street” (top) and “forest” (bottom).

Note that each class comprises different co-occurrence patterns.

6.5.3 Choice of Appearance Features

6.2 compares the classification performance of the three appearance repre-

sentations. In all cases, the contextual models yield improved performance, with a
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Table 6.2: Impact of appearance space on classification accuracy.

Feature Classification Accuracy (%) Gain

Appearance Models Contextual Models

SIFT-GRID 71.67 ± 1.17 77.20 ± 0.39 7.7%

using (2.21)

SIFT-GRID 54.97 ± 0.58 75.14 ± 0.75 36.7%

using (2.23)

SIFT-INTR 68.58 ± 0.41 72.65 ± 0.56 5.9%

DCT 47.33 ± 1.22 73.05 ± 0.54 54.3%

gain of 7.7%, 5.9% and over 54% for SIFT-GRID, SIFT-INTR and DCT, respec-

tively. Note that the contextual models achieve high performance (over 72%) for

all appearance features. More interestingly, this performance is almost unaffected

by that of the underlying appearance classification, in the sense that very large

variations in the latter lead to relatively small differences in the former.

This hypothesis was studied in greater detail, by measuring how contextual-

level performance depends on the “quality” of the appearance classification. The

number of Gaussian components in the appearance models was the parameter

adopted to control this “quality”. Figure 6.5(b) and (c) shows that decreasing this

parameter leads to a substantial degradation of appearance-level recognition, for

both SIFT and DCT. Nevertheless, the performance of the contextual classifiers,

built with these appearance classifiers, does not change substantially . On the

contrary, the contextual classifiers assure a classification gain that compensates

for the losses in appearance classification. For SIFT-GRID, this gain ranges from

about 20% at 64 Gaussian mixture components, to about 8% at 512. For the

DCT, corresponding gains are of 65% and 54% respectively. In result, while the

appearance classifier experiences a drop of 17% (21%) for DCT (SIFT-GRID) as

the number of components is reduced from 512 to 64, the performance of contextual

classification drops by only a small margin of 2% (5%).

Overall, the performance of the contextual classifier is not even strongly
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affected by the feature transformation adopted. While, at the appearance level,

the performance of the DCT is not comparable to that of SIFT, the choice of

transform is much less critical when contextual modeling is included: the two

transforms lead to similar performance at the contextual level. This suggests

that 1) any reasonable architecture could, in principle, be adopted for appearance

classification, and 2) there is no need for extensive optimization at this level. This

is an interesting conclusion, given that accurate appearance classification has been

a central theme in the recognition literature over the last decades.

6.5.4 Some Examples

The ability of contextual modeling to compensate for classification noise

at the appearance level can be observed by simple inspection of the posterior

distributions at the two levels. Figure 6.7 shows two images from the “street”

class of N15, and an image each from the “Ireland” and “Mayan ruins” CD of

the Corel Collection. The SMN and CMN vectors computed from each image

are shown in the second and third column, respectively. Two observations can

be made. First, as discussed in 6.3.1, the SMN vectors can include substantial

contextual noise, reflecting both types of concept co-occurrences. For example,

patches from the first image (“street” class) have high probability under concepts

such as “bedroom”, “livingroom”, “kitchen”, “inside city”, “tall building”. Some

of these co-occurrences (“bedroom”, “livingroom”, “kitchen”) are due to patch

ambiguities. Others (“inside city”, “tall building”) are consistent with the fact

that the concepts are contextually dependent. The SMN representation has no

power to disambiguate between the two types of co-occurrences. This is more

pronounced for larger semantic spaces: the SMNs of Corel images (43 dimensional

space) exhibit much denser co-occurrence patterns than those of N15.

Second, CMNs are remarkably noise-free for all semantic spaces considered.

They capture the “gist” of the underlying scenes, assigning high probability only

to truly contextual concepts. This increased robustness follows from the fact that

contextual models learn the statistical structure of the contextual co-occurrences

that characterize all SMNs associated with each class. This makes class models
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Figure 6.7: top) Two images from the “street” class of N15, and bottom) an

image each from the “Ireland” and “Mayan ruins” CD of the Corel collection.

Also shown with the images are the SMN and CMN vectors (middle and right

column respectively). Notice that the CMN vectors are noise-free and capture the

“gist” of the image.
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at contextual level mitigate ambiguity co-occurrences, which tend to be spurious,

while accentuating true contextual co-occurrences, which are stable. Consider, for

example, the image in the third row. Its SMN is a frequently occurring training

example for contextual models of “street”, “house”, “people” (this is true even

though the image has low probability of “street” and “house” under appearance

modeling), etc. On the other hand, it is an unlikely training pattern for contextual

models of “bear” and “hills”, which only accidentally co-occur with “street” or

“house”. Hence, this SMN has large posterior probability under contextual models

for “house” and “street”, but not for “bear” or “hills”.

6.5.5 Complexity

In this section we report approximate running times for training and test-

ing, under both the appearance and contextual class models. All experiments are

conducted on an 2x Intel Xeon E5504 Quad-core 2.00GHz processor, with average

image size of 270× 250 pixels. Learning of appearance models requires computing

SIFT/DCT features, which takes about 800/20ms per image respectively. Given

these features, 512 component Gaussian mixture models are learned from 100 train-

ing images in about 3 minutes per class, using the hierarchical approach of [159].

For testing, computing the likelihood of a given image requires about 50ms per

class. These likelihoods serve as features for the contextual models. A 42 compo-

nent Dirichlet mixture model, learned from 100 training images, with 800 SMNs

per image, requires about 2 minutes to learn. During testing, it takes about 30ms

to compute the likelihood of an image under each contextual class model.

6.6 Comparison with Previous Work

In this section we compare the proposed contextual recognition with existing

solutions to scene classification and image retrieval.
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Table 6.3: Classification Results on Natural Scene Categories.

Method Classif. Dims.a Accuracy (%)

N15 Dataset

Contextual Models Bayes 15 77.20 ± 0.39

pLSA [17]b SVM 40 72.7

pLSA [74] SVM 60 63.3

LDA [77]e Bayesian 40 59.0

“gist” like [74] SVM 16 45.3 ± 0.5

BoW [74] SVM 400 74.8 ± 0.3

BoW [74] SVM 200 72.2 ± 0.6

Bag of Concepts [83]c SVM 100 73.01

Kernel Codebook [154] SVM 3200 ∼75d

Diffusion Distance [82] SVM 2000 74.9

SIS [24] SVM 200 74.94

Semantic Space [120] SVM 15 73.95 ± 0.74

a Dimensionality of the space on which classification is per-

formed

b Uses half of the dataset for training

c Uses a subset of test images per concept

d Accuracy estimated from figure

e Our implementation of the algorithm
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Table 6.4: Classification Results on Natural Scene Categories.

Method Classif. Dims.a Accuracy (%)

N13 Dataset

Contextual Models Bayes 13 80.86 ± 0.50

LDA [77] Bayesian 40 65.2

pLSA [17]b SVM 35 74.3

pLSA [114] SVM 40 60.8

pLSA [74] SVM 60 65.9

BoW [74] SVM 200 74.7

Taxonomy [6] Bayesian 40 68

“gist” features [65] SVM 512 ∼55c

Semantic Space [120] SVM 13 77.57 ± 1.12

a Dimensionality of the space on which classification is per-

formed

b Uses half of the dataset for training

c Accuracy estimated from figure

Table 6.5: Classification Results on Natural Scene Categories.

Method Classif. Dims.a Accuracy (%)

N8 Dataset

Contextual Models Bayes 8 85.60 ± 0.70

Context Ancestry [80] Logistic 484 82

pLSA [17]b SVM 25 82.5

HDP-HMT [67] Bayesian 200 84.5

“gist” [104]c SVM 512 83.7

Semantic Space [120] SVM 8 84.24 ± 0.71

a Dimensionality of the space on which classification is per-

formed

b Uses half of the dataset for training

c Gist features implicitly uses weak spatial information
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Table 6.6: Classification Results on Corel Collection.

Methoda Classif. Dims. Accuracy (%)

C50 Dataset

Contextual Models Bayes 50 57.8

Appearance Models Bayes 129 53.6

Bag of Words [74] SVM 512 48.4

pLSA [17] SVM 50 40.2

LDA [77] Bayes 50 31.0

C43 Dataset

Contextual Models Bayes 43 42.9

Appearance Models Bayes 129 39.9

Bag of Words [74] SVM 512 36.3

pLSA [17] SVM 50 33.0

LDA [77] Bayes 50 24.6

a Our implementation of the algorithms

6.6.1 Scene Classification

Given the posterior probabilities of (6.3), MPE scene classification can be

implemented by application of Bayes rule. This consists of assigning image I,

of SMN π, to the scene class k of largest posterior PK|Π(k|π). 6.3, 6.4 and 6.5

compare the resulting classification accuracies for N15, N13, and N8 respectively,

with those of many methods in the literature. A number of observations can be

made from the table. First, contextual modeling achieves the best results on all

three datasets. Its performance is quite superior to that of topic discovery models

(LDA [77], pLSA [17, 114]), of which only [17] is remotely competitive. Even so, the

classification rates of the latter (72.7% on N15 , 74.7% on N13, and 82.5% on N8)

are well below those of the former (77.2%, 80.86%, and 85.6%). Somewhat closer

to this (74.8% on N15, 74.7% on N13) is the performance of SVMs with the BoW
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representation1. Note, however, that these require much higher dimensional spaces,

e.g. a 400 visual-word vocabulary [74], and storage of a number of support vectors

that grows with the number of classes and training examples. Contextual modeling

has lower dimensionality, lower complexity, and achieves a higher classification

accuracy2. Also reported is a baseline with discriminative learning [120] where

an SVM classifier is applied to the vector of outputs of the appearance classifiers.

Again, the proposed context models achieve superior classification performance on

all datasets.

Within the area of context modeling, e.g. comparing to the methods

of [104, 80], the proposed approach is again more effective. For the N8 (N13, N15)

dataset, [104] ([65], [74]) report a classification accuracy of 83.7% (55%, 45.3%3),

respectively, using the “gist” features of [104]. The corresponding figures for the

proposed contextual models are 85.6% (80.86%, 77.2%). The scene confusion ma-

trix for N15 is also shown in Figure 6.8. Note that most errors are due to confusion

between “coast” and “open country,” “living room” and “bed room,” or “living

room” and “kitchen.” These are very tolerable errors, given the similarity of scenes

in these classes. In fact, their images are sometimes difficult to discriminate even

for a human.

Finally, 6.6 presents classification results for the C50 and C43 datasets.

Contextual modeling again improves on the classification accuracy achievable with

appearance classifiers. For C50 the absolute gain is of 4.2%, for C43 of 3%.

When compared to the top performing published methods on the natural scene

dataset [74, 17] the proposed contextual modeling again achieves significantly

1Note that BoW representation is obtained by vector quantizing the space of descriptors and
representing an image with a visual word histogram.

2We note that better results have been reported for an extension of the BoW representation
that includes a weak encoding of spatial information [74, 179]. These results are the current state-
of-the-art for N15: 81.4% [74] using a SVM classifier on an 8400 dimensional space; 85.2% [179]
using a nearest neighbor classifier on an 8192 dimensional space. Note that the performance
of these approaches without the additional spatial encoding is 74.8% and 75.8%, respectively,
which is well below the 77.2% achieved by the proposed contextual models. Although contextual
classification could also be augmented with weak encoding of spatial information — one possibility
is to learn contextual class models for different image sub-regions and model the overall contextual
class model as a mixture of these sub-region models — it remains to be determined if the gains
would be as large as for the BoW representation. We leave this as a topic for future work.

3Using a 16 dimensional “gist” like feature instead of the commonly used 512 dimensions.
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Figure 6.8: Class confusion matrix for classification on the N15 dataset. The

average accuracy is 77.20%

higher accuracy. On C50, its accuracy is 57.8% while [74] and [17] achieve classifica-

tion rates of 48.4% and 40.2%, respectively. On C43, the corresponding numbers

are 42.9%, 36.3%, and 33.0%. Overall, it can be concluded that the proposed

contextual modeling consistently outperforms existing context-based scene classi-

fication methods in the literature.

6.6.2 Image Retrieval Performance

Finally, the benefits of holistic context modeling were evaluated on the task

of content based image retrieval, using the query-by-example paradigm. This is a

nearest-neighbor classifier, where a vector of global image features extracted from

a query image is used to retrieve the images of closest feature vector in an image

database. In Chapter 3, we have shown that state-of-the-art results for this type of

operation are obtained by using appearance-level posterior distributions (SMNs)

as feature vectors. In this work, we compare results of using the distributions

obtained at the contextual (CMN) and appearance (SMN) levels. The similarity

between the distributions of the query and database images is measured with the

Kullback-Leibler divergence [119].
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Figure 6.9: Precision-recall curves achieved with SMN, CMN, visual matching

and chance level image retrieval.

Figure 6.9, presents precision-recall (PR) curves on C15 and F18. Also

shown are the performance of the image matching system of [156], which is based

on the MPE retrieval principle now used but does not rely on semantic modeling,

and chance-level retrieval. Note how the precision of contextual modeling is signif-

icantly superior to those of the other methods at all levels of recall. For example,

on C15, the mean-average precision (area under PR curve) of CMN (0.73) is 32%

higher than that of SMN (0.55). The respective figures for F18 are 0.54 and 0.39,

a gain of over 38%. Overall, the PR curves of CMN are remarkably flat, attaining

high precision at high levels of recall. This is unlike any other retrieval method

that we are aware of. It indicates very good generalization: while most retrieval

approaches (even image matching) can usually find a few images in the class of

the query, it is much more difficult to generalize to images in the class that are not

visually similar to the query.

Figure 6.10 illustrates the improved generalization of contextual modeling.

It presents retrieval results for the three systems (top three rows of every query

show the top retrieved images using visual matching, SMN, and CMN respectively).

The first column shows the queries while the remaining columns show the top five

retrieved images. Note how visual matching has no ability to bridge the semantic

gap, simply matching semantically unrelated images of similar color and texture.
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This is unlike the semantic representations (SMN and CMN) which are much more

effective at bridging the gap, leading to a much smaller number of semantically

irrelevant matches. In particular, the ability of the CMN-based system to retrieve

images in the query’s class is quite impressive, given the high variability of visual

appearance.
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Figure 6.10: Retrieval results for four image queries shown on the left-most

column. The first, second, and third row of every query show the five top matches

using image matching, SMN, and CMN-based retrieval, respectively.




