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7.1 Introduction

The architecture proposed in Chapter 6 has several properties in common

with the family of theme or topic models, [14, 58]. Topic models were introduced to

facilitate the discovery of hidden structure in a corpus of data in the text processing

literature. Popular examples include latent Dirichlet allocation (LDA) [14] and

probabilistic latent semantic analysis (pLSA) [58]. In these models, each entry

in a corpus is represented as a finite mixture over an intermediate set of topics

discovered in an unsupervised fashion. However, in their original formulations,

topic models do not incorporate supervised information and can not be directly

employed for classification.

Several extensions of the LDA model have been proposed to address this

limitation in both the text and vision literatures1. One popular extension is to

apply a classifier, such as a SVM, to the topic representation learned by these

models [14, 17, 114]. A second approach is to incorporate a class label variable

in the generative model [77, 13, 167, 71, 180, 112]. These are denoted generative

extensions. Two popular extensions in this family, for scene classification, are that

of [77], here referred to as classLDA (cLDA), and [167], commonly known as su-

pervisedLDA (sLDA). The latter was first proposed for supervised text prediction

in [13]. Thus, like the representation of holistic context models, topic models for

supervised tasks have two layers. Appearance features are used to compute topic

probabilities (that correspond to the proposed SMNs), which are hierarchically

propagated to a more abstract layer that computes class probabilities (correspon-

dent to the proposed CMNs).

In this chapter, we discuss the generative extensions of the LDA model

in context of the proposed holistic context models (see Chapter 6). We start

by highlighting the similarities and differences between the cLDA model and the

holistic context model. Although the Bayesian network for both these models are

very similar, there are fundamental differences, the most important being the level

of supervision. Existing generative extensions of LDA such as cLDA and sLDA

1Note that some of these models were discussed in Chapter 4, however for clarity of the
presentation these models are reviewed again in this chapter
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rely on unsupervised discovery of topic. This fundamentally restricts their effi-

cacy for the task of visual recognition. This is shown by 1) a theoretical analysis

of the learning algorithms, and 2) experimental evaluation on classification prob-

lems. Theoretically, it is shown that the impact of class information on the topics

discovered by cLDA and sLDA is very weak in general, and vanishes for large

samples. Experiments show that the classification accuracies of cLDA and sLDA

are not superior to those of unsupervised topic discovery. Although the holistic

context models are effective at addressing this limitation, they have a different

learning and inference procedure, which prevent a systematic study of the benefits

of supervision in these models. Infact, existing approaches rely on the bag-of-words

representation whereas bag-of-features was the choice of image representation in

holistic context model (see 2.1.1 for details). In this chapter, to test the benefits of

supervision in LDA models, we propose a family of LDA models which we denote

as topic supervised (ts). Instead of relying on discovered topics, topic-supervised

LDA equates topics to the classes of interest for scene classification, establishing

a one-to-one mapping between topics and class labels. This forces LDA to pursue

semantic regularities in the data.

Note that the only, subtle yet significant, difference between the existing

generative extensions and the proposed topic supervised extensions, is that the

topics are no longer discovered , but specified . Both these systems rely on the same

image representation, that of bag-of-words, and the same learning/inference proce-

dures (although as we shall see in 7.5.3, learning in topic supervised models is much

more simplified). This enables us to attribute any difference in their performance,

to the difference in the level of supervision. It is shown that, topic supervision

significantly improves on the classification accuracy of existing supervised LDA

extensions. This is demonstrated by the introduction of topic supervised versions

of LDA, cLDA and sLDA, denoted ts-LDA, ts-cLDA and ts-sLDA respectively. In

all cases, the performance of topic supervised models is superior to that of the

corresponding LDA models learned without topic-supervision.

The chapter is organized as follows. Section 7.2 briefly reviews the literature

on generative models for scene classification. Topic models, in particular cLDA
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(a)

(b) (c)

Figure 7.1: Graphical models for (a) LDA and ts-LDA. (b) cLDA and ts-cLDA.

(c) sLDA and ts-sLDA. All models use the standard plate notation [19], with

parameters shown in rounded squares.

model is compared to the holistic context models in Section 7.3. The limitations

of existing models are highlighted in Section 7.4. Next, in Section 7.5 we introduce

the topic-supervised model. An extensive experimental evaluation of the proposed

frameworks is presented in Sections 7.5.4.

7.2 Topic Models

We start by reviewing LDA and its various generative extensions for clas-

sification.

7.2.1 LDA model

LDA is the generative model of Figure 7.1(a). Under it, images are sampled

as follows.

for each image do

sample π ∼ PΠ(π; α).

for i ∈ {1, . . . , N} do

sample a topic, zi ∼ PZ|Π(zi|π), zi ∈ L = {1, . . . , K}, where L is the set of

topics.
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sample a visual word vi ∼ PV |Z(vi|zi; Λzi
).

end for

end for

where PΠ() and PV |Z() are the prior and topic-conditional distributions respec-

tively. PΠ() is a Dirichlet distribution on L with parameter α, and PV |Z() a

categorical distribution on V with parameters Λ1:K. Although the parameters of

the model can be learned with the well known expectation maximization (EM)

algorithm, the E-step yields an intractable inference problem. To address this,

a wide range of approximate inference methods have been proposed [11], such

as Laplace or variational approximations, sampling methods, etc. In this work,

we adopt variational inference for all models where exact inference is intractable.

Variational inference for the LDA model is briefly discussed in Appendix D2. In

its original formulation, LDA does not incorporate class information and cannot

be used for classification. We next discuss two models proposed to address this

limitation.

7.2.2 Class LDA (cLDA)

ClassLDA (cLDA) was introduced in [77] for image classification. In this

model, shown in Figure 7.1(b), a class variable W is introduced as the parent

of the topic prior Π. In this way, each class defines a prior distribution in topic

space, conditioned on which the topic probability vector π is sampled. Images are

sampled as follows

for each image do

sample a class label w ∼ PW (w; η), w ∈ W
sample π ∼ PΠ|W (π|w; αw).

for i ∈ {1, . . . , N} do

sample a topic, zi ∼ PZ|Π(zi|π), zi ∈ L = {1, . . . , K}.
sample a visual word vi ∼ PV |Z(vi|zi; Λzi

)

2Note that the variational inference procedure is detailed for the LDA model of Figure 2.5(b),
which has notational differences with Figure 7.1(a), but the variational inference procedure is
identical.
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end for

end for

where, αw = {αw1, . . . , αwK}. Parameter learning for cLDA is similar to that of

LDA [77] and detailed in Appendix E.

Given image Iq, classification is performed by MPE decision rule, where the

posterior PW |V (w|Iq) can be approximated using a variational approximation [77].

7.2.3 Supervised LDA (sLDA)

The sLDA model was proposed in [13]. As shown in Figure 7.1(c), the class

variable W is conditioned by the topics Z. The original formulation uses uncon-

strained real-valued response variables W and is not suitable for classification. An

extension to discrete responses, using a softmax function, was introduced in [167].

An alternative extension to binary image annotation was proposed in [112], using a

multi-variate Bernoulli variable for W . In [180], the max-margin principle is used

to train sLDA, which is denoted maximum entropy discrimination LDA (medLDA).

In this work, sLDA refers to the formulation of [167], since this was the one previ-

ously used for scene classification. Images are sampled as follows

for each image do

sample π ∼ PΠ(π; α).

for i ∈ {1, . . . , N} do

sample a topic, zi ∼ PZ|Π(zi|π), zi ∈ L = {1, . . . , K}
sample a visual word vi ∼ PV |Z(vi|zi; Λzi

).

end for

sample a class label w ∼ PW |Z(w|z̄; ζ1:C), w ∈ W
end for

where, z̄ is the mean topic assignment vector z̄k = 1
N

∑N
n=1 δ(zn, k), and

PW |Z(w|z̄; ζ) =
exp(ζTwz̄)

∑C
l=1 exp(ζTl z̄)

(7.1)

a softmax activation function with parameter ζc ∈ R
K. The parameters of this

model can be learned with variational inference, as described in [167].
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(a) cLDA (b) ts-cLDA

Figure 7.2: Representation of cLDA and ts-cLDA on a three word simplex. Also

shown are sample images from two classes: “o” from class-1 and “x” from class-2.

a) cLDA model with two topics. The line segment depicts a one-dimensional topic

simplex, whose vertices are topic-conditional word distributions. Each class defines

a smooth distribution on the topic simplex, denoted by the contour lines. c) ts-

cLDA model. Topic-conditional word distributions are learned with supervision

which encapsulate the class attributes.

7.2.4 Geometric Interpretation

The models discussed above have an elegant geometric interpretation [14,

139]. Given a vocabulary of |V| distinct words, a |V| dimensional space can be

constructed where each axis represents the occurrence of a particular word. A

standard |V|− 1-simplex in this space, here referred to as word simplex, represents

all probability distributions over words. Each image (when represented as a word

histogram) is a point on this space. Figure 7.2(a) illustrates the two dimensional

simplex of all probability distributions over three words. Also shown are some

sample images from two classes, “o” from class-1 and “x” from class-2.

Figure 7.2(a) shows a schematic of cLDA with two topics. Each topic in

an LDA model defines a probability distribution over words and is represented

as a point on the word simplex. Since topic probabilities add to one, a set of K

topics defines a K−1 simplex, here denoted the topic simplex. When the number of

topics K is smaller than the number of words |V|, the topics span a low-dimensional



152

��� ��� ��� ��� � �� ��� � 	
� 

	
� �
�
� � �

	�

�



���� ����������� � �
��������� � ��
����

�
� � � 	�


�



�� �

����������� � � � �����

	
��

	
� � ��������� � ��
����

�� �����
���� �����
����! ��" ������
������

�� �����
���� �����
����! �#" ������
������

� ��� � 	
��

	
��� ���������

� ��
���� �� �����
����
�
� � � 	�


�



����

����������� � � � ��
����� ��
���� �� �����
����
����� ����! ��" ������
������

�
� � � 	�


�



����

����������� � � � ��
����
�� �����
���� �����

��� ! �#" ������
������ � ��� �
����������� � � 	

��

	
� � ���������

Figure 7.3: left) Four groups of words with equal word histograms. right) Four

groups of edge segments with the equal edge segment histograms. Note that each

group can be derived from the others by a displacement of words or edge segments.

(This figure is best viewed in color)

sub-simplex of the word simplex. The projection of images on the topic simplex

can be thought of as dimensionality reduction. In Figure 7.2(a), the two topics

are represented by Λ1 and Λ2, and span a one-dimensional simplex, shown as a

connecting line segment. In cLDA, each class defines a distribution (parameterized

by αw) on the topic simplex. The distributions of class-1 and class-2 are depicted

in the figure as dotted and dashed lines, respectively. Similar to cLDA, sLDA

can also be represented on the topic simplex, where each class defines a softmax

function3.

7.3 The Importance of Supervision

The architecture of holistic context models bear close resemblance to that

of cLDA. In Section 2.3, it was shown that SMNs can be computed using the

graphical model of Figure 2.5(b). In fact, the graphical model of Figure 2.5(b) is

that of LDA. Holistic context models introduce a second layer of modeling, using

3Strictly speaking, the softmax function is defined on the average of the sampled topic assign-
ment labels z̄. However, when the number of features N is sufficiently large, z̄ is proportional to
the topic distribution π. Thus, the softmax function can be thought of as defined on the topic
simplex.
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multi-modal Dirichlet distribution, on top of the SMNs obtained using the LDA

framework. This is similar in principle to the cLDA model where a uni-modal

Dirichlet distribution is introduced. Figure 7.1(b) presents the complete version

of this model, including the concept variable W at the semantic level. Given the

equivalence of the graphical models, it is worth discussing in detail the differences

between the two approaches. The fundamental difference is the level of abstraction

of the intermediate stage of the representation (topics vs. SMNs). While topics

are learned in an unsupervised manner, SMN features have explicit semantics.

Recall the semantic gap between appearance features and visual classes.

While text features (words) are intrinsically semantic, this is not the case for

vision, where localized appearance features (e.g. edge segments) have no semantic

interpretation. This is illustrated in Figure 7.3, where we present four groups of

text (words) and appearance (edge segments) features with identical distributions.

Because the word features are semantic, it is very difficult to construct a group

(sentence) with the same words that is semantically far from the others. This

is absolutely not the case for vision, where equivalence of feature distributions

places almost no constraint on the group semantics. As the figure shows, the exact

same segments can very easily be used to construct groups that depict completely

unrelated concepts. The fact that equivalence of feature distributions does not

translate into semantic equivalence is denoted a semantic gap.

While the semantic gap is small for text (semantic features), it is large for

images. Thus, the success of a representation for text classification is an unreliable

predictor of its success for scene classification. In particular, the observation that

unsupervised topic discovery produces semantic topics for text [14, 58], is very

weak evidence that it will be successful for visual recognition. In fact, Figure 7.3

shows that it cannot. In the absence of explicit supervision for topic semantics,

it is impossible to learn that the four edge groupings of (c) belong to different

topics. On the contrary, the four groups form a perfect appearance cluster, since

their segment histograms are identical . Unfortunately, due to the semantic gap,

this cluster has no well defined semantics as a whole. Hence, unsupervised topic

learning has no ability to bridge the semantic gap between local appearance and
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visual classes. This is unlike the proposed architecture, where SMN features are

learned with explicit supervision, and it does make sense to talk about a semantic

space.

It should be emphasized that in this toy example, although explicit topic

supervision results in four classes of identical distribution (a highly suboptimal

clustering under any unsupervised learning criteria), it produces the semantically

correct statistical description of the data under the chosen image representation.

Note that, under this model, all images of Figure 7.3(right) have an equal chance of

being assigned to any of the classes. This is a classifier of higher probability of error

than that learned without supervision. In fact, it is the weakest possible classifier.

On the other hand, unsupervised topic modeling produces a much stronger clas-

sifier: all images assigned to one class with high probability, other classes mostly

noise. In summary, the supervised model reflects both the true semantics of the

data and the ambiguity of the image representation. It attempts to perform the

right classification but can only do so with high uncertainty. The unsupervised

model invents an alternative classification problem, which has nothing to do with

the image semantics but can be solved very accurately. In addition to producing

a semantically useless image description, it is also confident on its accuracy.

7.4 Limitations of Existing models

In this section we present theoretical and experimental evidence that, con-

trary to popular belief, topics discovered by sLDA and cLDA are not more suitable

for discrimination than those of standard LDA.

7.4.1 Theoretical Analysis

We start by showing that, in both cLDA and sLDA, the class label has a very

weak influence in the learning of topic distributions. This is accomplished by an

analysis of the learning equations for both cLDA and sLDA, using the variational

approximation framework.

In both sLDA and cLDA the parameters Λ1:K of the topic distributions are
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Figure 7.4: Classification accuracy as function of the number of topics for sLDA

and cLDA, using topics learned with and without class influence and codebooks

of size 1024, on (a) N15, (b) N8 and (c) S8. Similar behavior was observed for

codebooks of different sizes.

obtained via the variational M-step as:

Λkv ∝
∑

d

∑

n

δ(vdn, v)φ
d
nk (7.2)

where d indexes the images,
∑

v Λkv = 1, δ() is a Kronecker delta function and φnk

is the parameter of the variational distribution q(z). This parameter is computed
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in the E-step with

For cLDA: γd∗k =
∑

n

φdnk + αwdk (7.3)

φd∗nk ∝ Λkvd
n

exp
[

ψ(γdk)
]

(7.4)

For sLDA: γd∗k =
∑

n

φdnk + αk (7.5)

φd∗nk ∝ Λkvd
n
exp

[

ψ(γdk) +
ζwdk

N

−
∑

c exp ζck

N

∏

m6=n

∑

j φ
d
mj exp

ζcj

N
∑

c

∏

m

∑

j φ
d
mj exp

ζcj

N

]

(7.6)

where, γ is the parameter of the variational distribution q(π) (see [14] for the de-

tails of variational inference in LDA). The important point to note is that the class

label wd only influences the topic distributions through (7.3) for cLDA (where αwd

is used to compute the parameter γd) and (7.6) for sLDA (where the variational

parameter φdnk depends on the class label wd through ζwdk/N).

We next consider the case of cLDA. Given that q(π) is a posterior Dirichlet

distribution (and omitting the dependence on d for simplicity), the estimate of

γk has two components: l̂k =
∑

n φnk, which acts as a vector of counts, and αwk

which is the parameter from the prior distribution. As the number of samples

increases, the amplitude of the count vector, l̂, increases proportionally, while the

prior αw remains constant. Hence, for a sufficiently large sample size N , the prior

αw has a very weak influence on the estimate of γ. This is a hallmark of Bayesian

parameter estimation, where the prior only has impact on the posterior estimates

for small sample sizes. It follows that the connection between class label W and

the learned topics Zi is extremely weak . This is not a fallacy of the variational

approximation. In cLDA (Figure 7.1(b)), the class label distribution is simply a

prior for the remaining random variables. This prior is easily overwhelmed by the

evidence collected at the feature-level, whenever the sample is large.

A similar effect holds for sLDA, where the only dependence of the parameter

estimates on the class label is through the term ζwdk/N . This clearly diminishes

as the sample size N increases. In summary, topics learned with either cLDA or
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sLDA are very unlikely to be informative of semantic regularities of interest for

classification, and much more likely to capture generic regularities, common to all

classes.

7.4.2 Experimental Analysis

To confirm the observations above, we performed experiments with topics

learned under two approaches. In the first, we used the original learning equations,

i.e. (7.3) and (7.4) for cLDA and (7.5) and (7.6) for sLDA. In the second we severed

all connections with the class label variable during learning (of the topics), by

reducing the variational E-step (for both cLDA and sLDA) to,

γd∗k =
∑

n

φdnk + α (7.7)

φd∗nk ∝ Λkvd
n
exp

[

ψ(γdk)
]

(7.8)

with α = 1. This guarantees that the topic-conditional distributions are learned

without any class influence. The remaining parameters (αw for cLDA, ζw for

sLDA) are still learned using the original equations. The rationale for these ex-

periments is that, if supervision makes any difference, models learned with the

original algorithms should perform better.

Figure 7.4 shows the scene classification performance of cLDA and sLDA,

under the two learning approaches, on the N15, N8, and S8 datasets (see Ap-

pendix A for details on the experimental setup). The plots were obtained with a

1024 words codebook, and between 10 and 100 topics. Clearly, the classification

performance of the original models is not superior to that of the ones learned with-

out class supervision. The sLDA model has almost identical performance under

the two approaches, on the three datasets. For cLDA, unsupervised topic discov-

ery is in fact superior on the N8 and S8 dataset. This can be explained by poor

regularization of the original cLDA algorithm. We have observed small values of

αwk, which probably led to poor estimates of the topic distributions in (7.3). For

example, the maximum, median and minimum values of αwk learned with 10 topics

on S8 were 0.61, 0.12, 0.04 respectively. In contrast, the corresponding values for



158

unsupervised topic discovery were 7.09, 1.09, 0.55. Similar effects were observed

in experiments with codebooks of different size. These results are clear evidence

that the performance of cLDA and sLDA is similar (if not inferior) to that of topic

learning without class supervision. In both cases, the class variable has very weak

impact on the learning of topic distributions.

7.5 Topic supervision

In this section introduce topic supervision for LDA models, and its impact

in learning and inference.

7.5.1 Topics supervision in LDA model

The simplest solution to the limitations discussed in the last section, is to

force topics to reflect the semantic regularities of interest. This consists of equat-

ing topics to class labels, and is denoted topic supervised LDA. Topic supervision

was previously proposed in semi-LDA [170] and labeled-LDA [116], for action and

text classification respectively. However, its impact on classification performance

is difficult to ascertain from these works, for several reasons. First, none of them

performed a systematic comparison to existing LDA methods. Second, both are

topic-supervised versions of LDA. Intuitively, topic supervised versions of clas-

sification models, namely cLDA and sLDA, should achieve better performance.

Third, semi-LDA adopts an unconventional inference process, which assumes that

p(zn|v1, v2, . . . , vn) ∝ p(zn|π)p(zn|vn). It is unclear how this affects the perfor-

mance of the topic-supervised model. Finally, the goal of labeled-LDA is to assign

multiple labels per document. This is somewhat different from scene classification,

although labeled-LDA reduces to a topic-supervised model for classification if there

is a single label per item.
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7.5.2 Models and geometric interpretation

To analyze the impact of topic-supervision on the various LDA models, we

start by noting that the graphical model of the topic supervised extension of any

LDA model is exactly the same as that of the model without topic supervision. The

only, subtle yet significant, difference is that the topics are no longer discovered , but

specified . It is thus possible to introduce topic-supervised versions of all models in

the literature. In this work, we consider three such versions, viz. “topic supervised

LDA (ts-LDA)”, “topic-supervised class LDA (ts-cLDA)”, and “topic-supervised

supervised LDA (ts-sLDA)”. These are the topic-supervised versions of LDA, cLDA

and sLDA, respectively, with the following three distinguishing properties,

• the set of topics L is the set of class labels W.

• the samples from the topic variables Zi are class labels.

• the topic conditional distributions PV |Z() are learned in a supervised manner.

We will shortly see that this has the added advantage of substantially simpler

learning.

Figure 7.2(b) shows the schematic of ts-cLDA for a two class problem on

a three word simplex. As with cLDA, Figure 7.2(a), Λ1 and Λ2 represent two

topic-distributions. There is, however, a significant difference. For cLDA, topic

distributions are learned in a bottom up manner and can be positioned anywhere

on the word simplex, by the topic discovery algorithm. For ts-cLDA, the topics

are specified: each topic is an image class.

7.5.3 Learning and inference with topic-supervision

The introduction of topic-level supervision decouples the learning of the

topic-conditional distribution PV |Z() from that of the other model parameters,

substantially reducing learning complexity. In general, learning topic distributions

would require a strongly supervised training set, however in absence of these labels,

all patch labels in an image are made equal to its class label, i.e. zdn = wd ∀n, d.
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Figure 7.5: Performance of ts-sLDA, ts-cLDA, sLDA, and cLDA as a function

of codebook size on (a) N13, (b) N8 and (c) S8. For ts-sLDA and ts-cLDA the

number of topics is equal to the number of classes. For sLDA and cLDA, results

are presented for the number of topics of best performance.

This type of learning has shown to be effective, both through the design of image la-

beling systems [21] and theoretical connections to multiple instance learning [155].

The ML estimate of Λk is

Λ∗
kv = arg max

Λk

∑

d

∑

n

δ(wd, k)δ(vdn, v) log Λkv (7.9)

such that
∑|V|

v=1 Λkv = 1. The solution to this optimization problem is

Λkv =

∑

d

∑

n δ(w
d, k)δ(vdn, v)

∑

j

∑

d

∑

n δ(w
d, j)δ(vdn, v)

. (7.10)
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(a) (b) (c)

Figure 7.6: Some example images that were misclassified by cLDA, but correctly

classified using ts-cLDA. The expected topic distributions for ts-cLDA and cLDA

(using 13 topics) are shown in the middle and bottom rows respectively. For ts-

cLDA, topic labels are same as the class labels and the high probability topics are

indeed the ones which capture the semantic meaning of the image. For cLDA, the

topic labels do not carry any clear semantic meaning.

Given the topic-conditional distributions, all other parameters can be learned as in

the original models. Parameter estimation for ts-cLDA is detailed in Appendix F.

7.5.4 Experimental analysis

Figure 7.5 presents classification results of ts-LDA, ts-cLDA and ts-sLDA,

as a function of codebook size, under the experimental conditions of Figure 7.4.

Compared to sLDA and cLDA, all three topic supervised approaches achieve su-

perior classification performance. This is true for all datasets across different

codebook size when compared to cLDA, and for all datasets and codebooks with

over 1024 codewords when compared to sLDA. The best performance across dif-
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Table 7.1: Classification Results on Natural Scene Categories.

Dataset

model N15 N13 N8

ts-sLDA 74.82 ± 0.68 79.70 ± 0.48 86.33 ± 0.69

ts-cLDA 74.38 ± 0.78 78.92 ± 0.68 86.25 ± 1.23

ts-LDA 72.60 ± 0.51 78.10 ± 0.31 85.53 ± 0.41

sLDA 70.87 ± 0.48 76.17 ± 0.92 84.95 ± 0.51

cLDA 65.50 ± 0.32 72.02 ± 0.58 81.30 ± 0.55

ferent codebooks and topics cardinality is reported in 7.1 and 7.2. On average,

across datasets, topic-supervision improves the classification accuracies of cLDA

and sLDA by 12% and 5% respectively. Among the three topic-supervised models,

ts-cLDA and ts-sLDA achieve comparable performance, which is superior to that

of the simpler ts-LDA model.

Figure 7.6 shows some images incorrectly classified by cLDA but correctly

classified by ts-cLDA, on the N15 dataset. Also shown are the topic histograms

obtained in each case, with ts-cLDA in the middle and cLDA in the bottom row.

The figures illustrate the effectiveness of ts-sLDA at capturing semantic regularities

— topics with high probability are indeed representative of the image semantics.

Note that such an interpretation is only possible as the topic labels in ts-cLDA

have a one-to-one correspondence with the class labels. For cLDA, topic histograms

merely represent visual clusters.
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Table 7.2: Classification Results on Sports8 and Corel50.

Dataset

model S8 C50

ts-sLDA 78.37 ± 0.80 42.33

ts-cLDA 77.43 ± 0.97 40.80

ts-LDA 77.77 ± 1.02 39.20

sLDA 74.95 ± 1.03 39.22

cLDA 70.33 ± 0.86 34.33

of the cited material.




