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ABSTRACT
The paper discusses the role of invariance in image process-
ing, specifically the desire to discriminate against unwanted
variations in the scene while maintaining the power to tell
the difference between object-intrinsic characteristics and
scene-accidental conditions. It provides an analysis and ref-
erences of what are directly observables in a general scene.

1. INTRODUCTION

In image processing, the light as it bounces off the scene
is the result of many different causes. In image retrieval
and in many other tasks of image processing, we are inter-
ested in the light response of only one of them: the light-
characteristics of the object embedded in the scene. In this
paper, we summarize the causes for the purpose of separat-
ing the conditions intrinsic to the object’s appearance from
the accidental scene.

To handle the problem, one could model the influence
of the scene on the appearance of the object, or one could
try to capture the intrinsic properties of the object in invari-
ant features. At any rate, modeling scene-specific circum-
stances has to be bootstrapped by the second approach of
invariant characteristics. The invariant approach has the ad-
vantage of being less complex at the expense of throwing
away essential information. For a complete analysis, nei-
ther of the two approaches can be missed. One or another
basic invariant observations will bootstrap a model which
may invoke more detailed invariant descriptions. In turn, it
will bootstrap a model of the scene and so on. In view of
this dichotomy, we aim to advance object retrieval in broad
domains from tight invariant descriptions.

The aim of invariant descriptions is to identify objects at
the loss of the smallest amounts of the information content.
If two objects or two appearances of the same object � � are
equivalent under a group of transformations � they are said
to belong to the same equivalence class:

��
�
� �� �� �� � � � �� � � Æ �� (1)

A property � of � is invariant under � if and only if � � re-
mains the same regardless the unwanted condition expressed

by �,

��
�
� �� �� ��� � ��� (2)

In general, a feature with a very wide class of invariance
looses the power to discriminate among essential differences.
The size of the class of images considered equivalent grows
with the dimensionality of �. In the end, the invariance
may be so wide that little discrimination among objects is
retained. The aim is to select the tightest set of invari-
ants suited for the expected set of non-constant conditions.
Hence, in the context of image retrieval, the invariant con-
ditions are to be specified (indirectly) by the user as they
reflect the intentions of the user. The oldest work on in-
variance in computer vision has been done in object recog-
nition. Invariant description in image retrieval is relatively
new, but quickly gaining ground. This presentation feeds on
the much larger [1, 2, 3].

2. FOLLOW THE LIGHT

In order to analyze what might be observed from a scene
in general without too much a priori knowledge about the
scene or the objects in the scene, we follow the light. When
we ignore the influence of the medium as well as inter-
reflections, the main degrees of freedom are the source, the
object, its surroundings and the camera. It is modeled as
free parameters in the Schafer-reflection model [4] as fol-
lows.

The light starts at the source, where there is freedom to
have 1 or more sources. Sources may be line sources or even
from all directions but these cases can be seen as special
cases of multiple point sources. Each source has a direction
relative to the scene, a spectral composition and intensity.
Likewise, the essential free parameters of the camera are
the spectral sensitivity, the gain, its direction relative to the
scene and distance. As the spectral content of the source and
the spectral sensitivity of the camera have practically the
same effect, we take them together under the name spectral
content. The same holds for the source intensity and the
gain of the camera under the name of intensity.

For the object, the free parameters can be grouped in
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free as seen directly see
parameters in scene observables

source direction shadows one source [5]
� directions direction source
� locations direction source
cast� depth order

source extent specularity [6]
spectral content spectral composition color source [7]
intensity contrast composition contrast
camera direction projection affine distortion
camera distance size composition depth [8]
stage setting occlusion depth order to view

clutter –
objects specularities color source

� locations number sources
� size shape source
self-shadow one source
shading direction source
� maxima number of sources [6]

Table 1. Inspired by [9], page 122. What is directly observ-
able from the outer scene? Free parameters of the scene and
the single features that can be observed in general without a
priori knowledge about the specifics of the scene. Methods
listed in the references generally assume sufficiently rich
scenes.

the cover, ranging from glosse to matte objects. Glosse pro-
duces specular reflections. The albedo describes the true
color of the object, and the texture describes the spatial lay-
out of the albedo patterns at its surface. The touch of an ob-
ject describes the 3D-nature of the surface as it introduces a
large variability in the perception of the object. In this sim-
plification, the final group of object parameters is grouped
under form.

For a scene, the one group of parameters left is the stage
setting where the objects are placed in the scene in a cer-
tain depth order with respect to the light, causing shadows,
and with respect to the view, causing occlusion and clut-
ter, preventing the object to be delineated amidst similarly
appearing objects.

In listing the main groups of accidental, unknown causes
of variation in a general scene, we ignore light-emitting,
mirroring, fluid, and transparent objects.

3. THE OUTER SCENE

Given all the sources of variations in a scene, Table, 3 gives
an overview of what can be observed about a general scene.

In the reference [5], a method was described capable of
discriminating in a natural scene shadow edges from ma-
terial edges by comparing at each point the invariant de-
scription assuming matte and gloss covers. [6] provides
a method for the discrimination of ambient light from di-
rected light on the basis of the matte and specular reflection
from an object. Similarly, to determine the spectral content
of the source (in his case to classify indoor versus outdoor
scenes), [7] determines the maximum extent of the spectral

content of the image with the spectral content of the two
sources. As in a general scene it is likely that there are (un-
noticed) specularities somewhere, the spectral components
of the source will be seen in the image. Shape from shad-
ing not only reconstructs the shape of the object but at the
same time reveals the direction of the light source. All these
methods indicate that with some effort, something can be
said about the spectral content, number and direction of the
source from the characteristics of a general scene.

It should be noted that only a few instances of good ev-
idence in the image are needed to decide where the source
is and what its spectral contents is. Classification of points
as shadow points may fail at many places as long as there is
enough evidence pointing at one and the same few sources.
Such implies that even if shadow classification relies on ma-
terial assumptions of Lambertian reflection, the method will
be successful in determining the presence of shadow in a
general scene as it may be expected that some objects with
Lambertian reflection will be approximated by the absence
of Fresnel reflection.

Essentially the same approach of surveying the content
of the image for composition but then applied to shape is
done in [8]. From the diminishing size of affine-invariant
descriptors such as fitted ellipses, it is deduced what the
depth order in the image is. Again, it may be assumed for
a general image that if at the same height in the image the
sizes generally are smaller than at the bottom of the image,
this will say something about the depth order of the image.

From the table, it is clear that many instances of knowl-
edge about the scene parameters are far from complete. And,
we treat the causes as independent factors, ignoring any
inter-reflections among them. Especially for closely packed,
transparent, mirroring or poly-limbed objects this may not
be a valid assumption, but we have to start somewhere.

4. THE INNER SCENE

Table 4 provides a list of free parameters of the object and
what can be done to find them.

Photometric invariants [10] and [2] serve as invariant
descriptors for the first group of free parameters. In [10],
matte patches under white light are described in the ��� ��� ��
color space with ���

���
�
���

���
�
���

���
. The color description

is invariant for shadow, shading and light intensity and only
dependent on the albedo of the object. By computing the
ratios

������

������
�
������

������
,
������

������
in the �������� color

space the values are invariant under a change in the color of
the source while being invariant against shadow and shad-
ing. In [2], various color differential invariants are derived
computed in the Gaussian color scale space framework, as
indicated in table 4. For each feature, the invariance is in-
dicated by a ’+’. The number of distinguishable colors is
recorded from the 1000 colors of the PANTONE system.
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free parameters as seen constraint directly see
on object on free observables

parameters

cover albedo
gloss specularity – cover type ��� [10]

� locations – facing
apparent color – object color � [2, 10]

matte apparent color white source object color � [2, 10]
color source constancy � [2, 10]

texture
albedos – [11]
� layout – [12]

touch
meso-highlights gloss roughness
meso-shadow one source roughness
meso-shading matte meso-shape [13]

one source
form

matte macro-shading one source shape
discontinuity direction folds [14]

Table 2. Directly observables in the inner scene. �	
 Im-
plies the classification of cover type by combination of re-
sults.

invariant for
source � � � � � �

intensity direction patch orient specular
�� - - - - 983 1000
�� + - - - 978 1000
�	 + + - - 820 970
�
 + + + - 757 974
�� + + - + 461 462

Table 3. From [15]. The trade-off between tightness of the
invariance and discriminatory power by showing the num-
ber of color patches from 1000 which still can be discrimi-
nated. � denotes spatial scale of the filter. Note that invari-
ance for surface orientation implies invariance for viewing
direction and illumination direction.

As expected, the color difference�, with no invariance dis-
criminates all patches, but even for high invariance, color
constancy 
 and generalized hue � keep up considerable
discriminatory power.

For the cover the two common types of reflective proper-
ties of the object are dull or glosse. For an approximate dull
surface reflection is Lambertian its intensity depending on
the relative orientation of the patch to the light and the cam-
era. This requires intensity invariant features [10]. From
the discussion it is clear that once Lambertian invariance is
applied, the result is indistinguishable from intensity varia-
tions. Alternatively, an object may have specular reflection,
mirroring the spectral properties of the incoming light, [5].
From specular reflections, once we are able to identify them,
we can identify the local orientation of the object’s surface
patch with equal angles towards the camera and the light
source, as discussed above under the outer scene. From the
diffuse reflection we detect the albedo patterns of the ob-
ject, provided we have normalized for the light spectra of

the source and camera. For the case we do not have a white
source, we can say less about the albedo, but we are still
capable of retaining some discriminatory power among dif-
ferently colored objects, [2].

Texture, here loosely defined as the spatial layout of
albedo mixtures, in effect is a complex topic yet very help-
ful for the identification of true object parameters. The mere
presence of more colors than just one compensates for the
loss of information in the invariant descriptions cited above
to uniquely identify an object. Presence of colors in local
histograms was studied in [11]. Statistics of local orderings
with a large capacity for discriminations were described in
[12].

Touch is the group of parameters describing surface rough-
ness, a topic barely touched upon in image retrieval. Small
pits in the surface will present itself as a pattern of shadows,
whereas smaller variations in the depth will appear as shad-
ings, which may be recovered as such when the other factors
such as albedo are assumed constant. Statistics of rough ob-
jects illuminated from different directions are given in [13].

The object form will induce large scale shading, which
may be recovered by shape from shading approaches. From
the table, it is clear that we can have only a limited view on
the object and the object properties.

5. AN IMAGE RETRIEVAL SYSTEM BASED ON
INVARIANCE

A system for image retrieval on the basis of a visual exam-
ple should be capable of handling the following accidental
conditions of variation in the scene. We discuss geometry-
related sources of variation, photometric sources of varia-
tions, object related sources and scene related sources of
variation:

The unknown location of the object in the image, re-
quires translation invariance. This is most commonly en-
countered. Almost all features in all systems are computed
at all locations of the image. An unknown orientation of the
object in the plane of the scene requiring rotation invariant
features. An unknown scale at which the object is observed,
requires scale invariant recognition, usually over a range of
scales. Scale invariance requires that absolute size can no
longer play a role in the recognition. Any references to
the area, the number of points (in the histogram) should be
made relative to the other areas of the object. The reduction
of the 3D-scene to a 2D-view by an unknown projection an-
gle demands the use of affine invariant features. These are
most demanding from all factors. Point properties or the
(local) size-normalized histogram are most commonly used
to design location, orientation and limited scale invariant
feature sets.

The photometric sources of variation have been discussed
above. Depending on the intent of the user, a source of vari-
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ation may be the spectral composition of the source. The
variations due to the unknown intensity of the illumination
will almost implied in other sources of variation unless stan-
dardized true color recording is in order as in a museum.

The variability in the object has been described above in
extent, it includes cover, albedo, texture, touch and form, all
requiring specific sets of invariant features to which table 4
gives a partial solution. Again, it depends on the intent of
the user, whether the sources of variation are included in the
search. The variation cannot be entirely separated from the
photometric variations in the scene.

The influence of the surrounding scene is evident in oc-
clusion. As it wipes out part of the evidence, occlusion pre-
vents the use of whole body shape features. It makes little
sense to compute features in an invariant manner while ig-
noring the difficulties for general object segmentation. Es-
pecially the conditions of clutter and occlusion are hard to
handle for the average segmentation algorithm. Therefore
weak segmentation [1] of identifying points rather than com-
plete segmentations is a sensible way out restricting the sim-
ilarity to comparing point set groupings [16].

6. CONCLUSION

From the list, we conclude that the use of histograms of lo-
cal photometric invariant color and texture features tailored
to the intent of the user with the query is a powerful and
computational efficient approach to image retrieval. Com-
bining shape and color (and in the future texture) all in in-
variant fashion is a powerful combination as described by
[10] where the differential structure of color pairs are stored
to identify objects.

When applying invariance for content-based retrieval,
the degree of invariance should be tailored to the recording
circumstances. Clearly a feature with a very wide class of
invariance looses the power to discriminate among essential
differences. The aim is to select the tightest set of invariants.
What is needed is a complete sets of image properties with
well-described variant conditions that they are capable of
handling, see [15] and the table 4. This paper was aimed at
a further step towards the description of information avail-
able from the scene.
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