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ABSTRACT

Gauss mixtures have gained popularity in statistics and
statistical signal processing applications for a variety of rea-
sons, including their ability to well approximate a large class
of interesting densities and the availability of algorithms
such as EM for constructing the models based on observed
data. We here consider a different motivation and frame-
work based on the information theoretic view of Gaussian
sources as a “worst case” for compression developed by
Sakrison and Lapidoth. This provides an approach for clus-
tering Gauss mixture models using a minimum discrimina-
tion distortion measure and provides the intuitive support
that good modeling is equivalent to good compression.

1. INTRODUCTION

Gauss mixtures have played an important role in modeling
random processes for purposes of both theory and design.
Although newly popular, they have been used in signal pro-
cessing for many decades. For example, linear predictive
coded speech (LPC) can be viewed as fitting Gauss mix-
ture models to speech when the autoregressive (AR) mod-
els fit to segments of speech are excited by Gaussian resid-
ual processes. In this case the synthesized speech becomes
a composite Gaussian process and hence locally a Gauss
mixture. The most popular means of fitting a Gauss mix-
ture model to data is the EM algorithm, but clustering tech-
niques with suitable distortion measures between observed
data and resulting model can be used, as was the Itakura-
Saito distortion used for fitting AR models and quantizing
them in [3]. The Itakura-Saito distortion is an example of
a minimum discrimination information (MDI) distortion, a
measure based on model fitting techniques of Kullback us-
ing relative entropies [4]. Potential advantages of cluster-
ing techniques over the EM algorithm are the use of min-
imum distortion rules for model selection and the formu-
las describing centroids for the distortion measures, formu-
las which when combined with quantization theory provide
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quantitative relations between minimum discrimination in-
formation distortion measures and the performance of opti-
mized robust compression systems.

One of the key properties of the Gaussian model is its
role as a “worst case” in compression/source coding prob-
lems, a characterization developed by Sakrison [6] and Lapi-
doth [5] and subsequently extended to show that a Gauss
mixture model provides a “worst case” model for compres-
sion for any mixture source, including sources formed by
classifying and conditioning [1]. Thus the use of Gauss
mixture models provides a robust approach to classification
and compression of nonGaussian sources with similar local
second order properties.

The basic idea of MDI clustering to form Gauss mixture
models is reviewed, its application to random fields is dis-
cussed, and a preliminary application to context based im-
age retrieval is described. Further results will be presented
at ICIP.

2. PRELIMINARIES

Suppose that X = {Xi; i ∈ ZN}, ZN = {0, 1, 2, . . . , N −
1} is a k-dimensional Gaussian random vector with proba-
bility density function (pdf) g, mean vector m, and covari-
ance matrix K with determinant |K|. Notational problems
arise when using ordinary vectors and matrices to model
images, e.g., for some purposes it is more useful to think of
an image as a raster or random field X = {X(i, j); i, j ∈
ZN} rather than as a single-indexed vector X = {Xi; i ∈
ZN2}. In the latter case the covariance matrix is easily de-
scribed in vector notation asK = E[(X−EX)(X−EX)t],
but in the former case it is often more convenient to deal
directly with the covariance function. For example, if an
image is assumed to be spatially stationary, then the covari-
ance function will be a Toeplitz operator, but if the raster is
converted into a single indexed vector X to obtain the co-
variance matrix K , the matrix will not be a Toeplitz matrix.

Given a k-dimensional random vector X with a smooth
pdf f , a Lloyd-optimal vector quantizer is described by (see,
e.g., [2])
• an encoder α mapping input vectors x into an index set I
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• a decoder β mapping each index i ∈ I into a reproduction
value yi ∈ C = {ym; m ∈ I}
• an overall quantizer mapping Q(x) = β(α(x))
• a distortion measure d(x, yi) between input x and repro-
duction yi.
• a measure of rate (in bits or nats) required to specify yi.
The average distortion is defined by

Df(Q) = Ef [d(X,Q(X))].

Several notions of rate are used. The most common are
r(yi) = log ||C|| for fixed rate coding, r(yi) = the num-
ber of bits required by a noiseless code to specify i to the
decoder, and r(yi) = − log p(yi), where p(yi) is the prob-
ability X is encoded into reproduction yi. The latter def-
inition is an approximation to the optimal rate when the
codeword indices are optimally encoded, e.g., by a Huff-
man code. We use this definition of rate, which results in
entropy-constrained vector quantization (ECVQ) and an av-
erage rateRf (q) = Hf (q(X)), the entropy of the quantized
output.

The operational distortion-rate function δ(R) is δf (R) =
infQ:Rf (Q)≤RDf (Q). Optimal codes must satisfy the gen-
eralized Lloyd conditions:
• The encoder is the minimum Lagrangian distortion map-
ping α(x) = argmini[d(x, yi) + λr(yi)], where λ is a La-
grange multiplier.
• The reproduction codewords are centroids:
yi = infy E[d(X, y)|α(X) = i)]
• The indices are optimally losslessly encoded.

The Lloyd clustering algorithm iteratively applies these
properties to improve a given code. The algorithm is well
defined whenever both the minimum distortion rule and the
centroid rule can be applied with reasonable complexity.

3. MINIMUM DISCRIMINATION INFORMATION
QUANTIZATION

Consider now the problem of fitting a Gaussian mixture
model to observed data as given by a learning or training
set. The primary motivation here is that Gaussian models
will provide a worst case for the actual source data that is
mapped into the model. Because there are many such Gaus-
sian models which will be chosen at random according to
the observed source data, the overall model is a composite
Gaussian source or, confining attention to a single vector, a
Gauss mixture. We follow Kullback’s approach as applied
to low rate speech coding [3]. The method is simply an ex-
tension of the speech case to multiple dimensional sources
such as images.

Since each Gaussian model is described by its mean and
covariance matrix, say (ml,Kl) for the lth model, the issue
is how to measure the distortion between an observed vector
x and each of the models in order to select the one with the

smallest distortion. We assume that second order moments
can be estimated from the observation x, that is, we have
estimates m̂x and K̂x. This effectively assumes that it is the
second order characteristics which are important. Assuming
local spatial stationarity, m̂x and K̂x might be estimated by
a sample average, e.g.,

K̂x,m(n) =

∑
i,j:|i−j|=n(xi −m)(xj −m)

N(n)
; n ∈ I2

(1)
where, e.g., one might choose N(n) = #{i, j : |i − j| =
n}. Choosing m = m̂x in particular yields a covariance
estimate. This is a notoriously bad estimate since some val-
ues are based on very few pixels, but the estimates will be
smoothed when computing centroids in the Lloyd cluster-
ing. Alternatively, one might use sample averages only for
small lags where they are reasonably trustworthy, e.g., only
for adjacent pixels, and then find a “maximum entropy” ex-
tension if it exists, e.g., estimate the full K̂ as that agreeing
with the trusted value and having the maximum determi-
nant |K| (which means the maximum differential entropy
over all pdfs with the known second order moments). This
is an example of the famous MAXDET algorithm [7].

For a pdf estimate f̂ consistent with the moment con-
straints the distortion from the input to gl is given by the rel-
ative entropy H(f̂ ||gl) =

∫
dx f̂(x) ln f̂(x)/gl(x) Choose

the pdf f̂ as the density consistent with the moment con-
straints which minimizes the relative entropy between f̂ and
the fixed gl. This is the minimum discrimination informa-
tion (MDI) density estimate of f̂ given gl and the second
order constraints. If g is assumed to be Gaussian, then the
minimizing f̂ will also be Gaussian and

dMDI(x, (ml,Kl))

= H(f̂ ||gl)
=
1

2
[log
|Kl|
|K̂x|

+ Tr(K̂xK
−1
l )

+(m̂x −ml)
tK−1l (m̂x −ml)− k].

This can be rewritten by reverting from the matrix form to
the raster form:

dMDI(x, (ml,Kl))

=
1

2
[log
|Kl|
|K̂| +

∑

i,j∈I
K̂x(i, j)K

−1
l (i, j) +

∑

i,j∈I
(m̂x(i)−ml(i))(m̂x(j)−ml(j))K

−1
l (i, j)− k]

=
1

2
[log
|Kl|
|K̂x|

+
∑

i,j∈I
K−1l (i, j)[K̂x(i, j)

+(m̂(i)−ml(i))(m̂(j)−ml(j))] − k]

=
1

2
[log
|Kl|
|K̂x|

+
∑

i,j∈I
K−1l (i, j)K̂x,ml(i, j)− k]

15



Itakura and Saito originally derived their “error match-
ing measure” by an approximate maximum likelihood argu-
ment. A similar informal argument can be used here. An
alternative view of matching a model to an observed vector
x is to assume that x was produced by one of the Gaussian
sources gl and to choose an l according to the maximum
likelihood rule, which is equivalent to choosing l to mini-
mize the maximum-likelihood (ML) or log-likelihood (LL)
distortion

dLL(x, (ml,Kl))

= ln |Kl|+ (x−ml)
tK−1l (x−ml)

= ln |Kl|+ Tr(K−1l (x−ml)(x −ml)
t)

(this is not strictly speaking a distortion measure since it
is not necessarily nonnegative). Suppose for the moment
that the inverse covariance operator K−1l , i.e., the function
satisfying

∑
j∈I Kl(i, j)K

−1
l (j,m) = δi−m (δ is the Kro-

necker delta), is approximately Toeplitz, i.e., thatK−1l (j,m)
≈ K−1l (j −m) for j,m ∈ I. Assume also that the means
ml are constant vectors, e.g., ml = ml(1, . . . , 1). By anal-
ogy with the properties for ordinary scalar random processes,
it is conjectured that this is the case for stationary random
fields when the dimension k is large. By analogy with the
speech case, it is also conjectured that this is the case when
autoregressive modelling methods are used and the dimen-
sion is large, e.g., when the underlying model is assumed to
have the form Xn = Zn −

∑
k∈N Xn−k where Zn are iid

Gaussian random variables the set N is suitably ordered so
that the random field is a Markov mesh. Then the ML rule
is equivalent to the minimization of

dLL(x, (ml,Kl)

= ln |Kl|+ (x −ml)
tK−1l (x−ml)

= ln |Kl|+
∑

i,j

(x(i) −ml)(x(j) −ml)K
−1
l (i, j)

≈ ln |Kl|+
∑

n

K−1l (n)×
∑

i,j:|i−j|=n
(x(i) −ml)(x(j) −ml))

= ln |Kl|+
∑

n

N(n)K−1l (n)K̂x,ml(n),

where K̂x,ml is the second order estimator of (1). Thus

dLL(x, (ml,Kl)) ≈ ln |Kl|+
∑

i,j

K−1l (i, j)K̂x,ml(i, j)

= dMDI(x, (ml,Kl)) + ln |K̂x|+ k

When the approximation is valid, the two distortion mea-
sures yield approximately the same minimum distortion rule
since they differ by a constant and by a term that depends

only on the observed input x. Note in particular that the
actual covariance estimate of the input K̂x need not be cal-
culated to find a minimum distortion codeword, it is the co-
variance of the models that is important.

4. MDI AND ML CENTROIDS

As in the analogous speech case [3], this distortion measure
is amenable to the Lloyd clustering algorithm, i.e., there is
a well defined minimum distortion encoder using dMDI and
the distortion has well defined Lloyd centroids. In particu-
lar, the centroids ml and Kl must minimize the conditional
expected distortion.

E[dMDI(X, gl) | α(X) = l]

=
1

2
E[ln

|Kl|
|K̂X |

+ Tr(K̂XK
−1
l )

+(m̂X −ml)
tK−1l (m̂X −ml)− k | α(X) = l]

where m̂X and K̂X are the mean and the covariance esti-
mates for observation X . The mean centroids are given by
ml = E[m̂X | α(X) = l] regardless of Kl since this choice
minimizes the quadratic term in the mean as 0 (the centroid
with respect to a weighted quadratic measure is the mean).
With this choice of ml need Kl to minimize

E[ln
|Kl|
|K̂X |

+Tr(K̂XK
−1
l )− k | α(X) = l]

= ln
|Kl|
|K l|

+ Tr(K lK
−1
l )− k + E[ln

|Kl|
|K̂X |

| α(X) = l]

≥ E[ln
|K l|
|K̂X |

| α(X) = l]

with equality if Kl = K l (since the first three terms are
just the Kullback-Leibler distortion between two Gaussian
distributions with the given covariances and 0 means).

The centroids for the ML distortion measure can be sim-
ilarly found. Now the goal is to find ml and Kl to minimize
the conditional average distortion

E[dLL(X, gl) | α(X) = l]

= E[ln |Kl|+ (X −ml)
tK−1l (X −ml)|α(X) = l]

As before, the optimal mean regardless of the covariance
is given by ml = E[X | α(X) = l]. Define the average
K l = E[(X −ml)(X −ml)

t]. Then

E[dLL(X, gl) | α(X) = l]

= [ln
|Kl|
|K l|

+ Tr(K−1l K l)− k] + k + ln |Kl|

≥ k + ln |Kl|
with equality if Kl = Kl = E[(X − ml)(X − ml)

t |
α(X) = l], so that once again centroids are computed by
averaging.
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5. MDI AND ML CLUSTERING

Application of the Lloyd algorithm to the MDI or ML dis-
tortion measures yields a model VQ, a mapping of input
vectors X (e.g., image blocks) into a model. Under reason-
ably general conditions, the Lloyd algorithm converges. If
the algorithm converges to a stationary point, the centroid
formulas provide a formula for the resulting MDI distortion
in terms of the model covariances of the codebook and their
probabilities of occurence, i.e., in terms of the Gauss mix-
ture model produced by the Lloyd algorithm.

Since we are considering variable rate systems, it is nat-
ural to consider an entropy constrained VQ for the models
as well: dECMDI(x, gl) = dMDI(x, gl) − λ ln pl. Applying
the MDI centroid formula provides a simple formula for the
average ECMDI distortion:

DECMDI =
1

2

∑

l

pl ln |Kl| − E[ln |K̂X |] + λH(p) (2)

The ML centroid yields a similar result except that the
E[ln |K̂X |] is absent.

It is shown in [1] using high rate asymptotic quantiza-
tion theory that if one designs a classified VQ by first de-
signing a classifier, e.g., the MDI VQ just considered, and
then optimally designs VQs to minimize mean squared er-
ror for the resulting Gaussian models, and then applies the
code by first classifying the input and then applying the opti-
mal code for the class chosen, then the average distortion at
rate R (assuming high rate and optimal bit allocation across
the classes) is DMSE = bk(2πe)e

2
k (DECMDI+E[ln |K̂X |]−R),

where bk is a constant depending only on the dimension and
not on the underlying pdfs and the MDI Lagrangian is cho-
sen as λ = 1. This relates the MSE in the resulting clas-
sified VQ to the ECMDI distortion used to design the clas-
sifier, providing a new relation between modeling accuracy
and the resulting performance in a quantizer based on the
model.

6. AN IMAGE RETRIEVAL APPLICATION

A simple example of a clustered Gauss mixture model to
image archiving and querying is presented and and com-
pared with the common color histogram method. Compar-
isons to other methods are in progress. An annotated test
database with one hundred 96 by 128 color images of fif-
teen different “types” (e.g., satellite images, indoor images)
was constructed of which five images from five different
types were used as a training set to produce a Gauss mix-
ture codebook of 64 components as described. The block
size was 8× 8 and the dimensions of the partial covariance
matrix were 2 × 2. Signatures for both query and target
images were formed by encoding an image using the min-
imum distortion (MDI) encoder to obtain a histogram for

Accuracy Gauss Mixture Color Histogram
Precision 0.9523 0.8928

Recall 0.9259 0.8064

Table 1. Comparison of GM-based and histogram-based image
retrieval

the components. A simple decision tree was designed to de-
cide whether or not a “match” occured between the query
image (representing its type) and the target image based on
the component histogram of each. The average accuracy re-
sults from 15 queries (one of each type) to the test database
are presented along with the results for the color histogram
method [8] in Table 1, where Precision is the fraction of the
retrieved images that are relevant to the query and Recall is
the fraction of the total number of relevant images that are
retrieved.
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