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A. Implementation Details

Optimization hyperparameters. Table 1 shows pretrain-
ing and fine-tuning hyperparameters used on each dataset.
Stochastic gradient descent (SGD) of mini-batch size N =
64 is used to optimize all models except TSM ResNet-50,
where we used SGD with N = 32 to save GPU resources
and scaled the learning rate accordingly. Due to a substan-
tial difference in training set size and data statistics, we de-
termine these individually on each dataset on a left-out val-
idation set. Default hyperparameters for the proposed DRL
iterations, as described in Algorithm 1, 2 and 3 of main text,
are provided in table 2. These are used in all experiments
unless otherwise noted.

Preprocessing. During training, videos are resized and
randomly cropped to the desired spatio-temporal dimen-
sion, after which color jittering and random horizontal flip-
ping are applied. To ensure the fairness of the dynamic
score metric across model architectures, we use an adap-
tive sampling frame rate to ensure that the duration of input
clips is fixed at 1 second. At test time, model outputs are
aggregated over center crops of 10 1-second clips sampled
uniformly from each input video.

Training resources. Experiments are performed on
NVIDIA GeForce GTX 1080 Ti GPUs on an internal clus-
ter. Data parallelism is used to distribute batches to multiple
GPUs when training larger networks (3D ResNet-50 [5],
TSM ResNet-50 [10]). Total training time per episode
on Kinetics-400 [7] varies from 2 to 5 days depending on
model architecture.

B. Extended Results

Feature visualizations. Figure 1 shows the t-SNE [13]
visualization of feature representations extracted from UCF
and HMDB videos, using TSM ResNet-50 [10] with stan-
dard and DRL pretraining on Kinetics. It can be observed

Dataset FT Epochs Initial
LR

LR Step
(Epochs) WD Freeze

BN

miniKinetics ✗ 50 0.1 20
10−4 ✗

✓ 25 0.01 10 ✓

Kinetics ✗ 100 0.1 30
10−4 ✗

✓ 25 0.01 10 ✓

UCF-101 ✗ 100 0.1 30
10−3 ✗

✓ 30 0.001 20 ✓

HMDB-51 ✗ 100 0.1 30
10−3 ✗

✓ 30 0.001 20 ✓

Diving-48 ✗ 100 0.1 30
10−3 ✗

✓ 50 0.01 20 ✗

Table 1. Optimization hyperparameters by training dataset. FT—
fine-tuning, LR—learning rate, WD—weight decay, BN—batch
normalization [6]. At multiples of LR step, learning rate is reduced
by 10×.

Distillation weight α 0.5
Adversarial input weight β 0.5
(Alg. 1) Perturbation strength ϵ 8/255
(Alg. 2 & 3) Dynamic loss weight λ 0.5

Table 2. Default DRL hyperparameters.

that DRL improves representation quality, with video fea-
tures forming more pronounced clusters in the t-SNE plots.
This translates to superior linear classification accuracy on
both datasets, as reported in Table 2 of main text.

Model predictions. Figure 2, 3 and 4 contain frames from
sample test videos and their corresponding predictions by
baseline and DRL-trained models. We notice that DRL fre-
quently corrects mistakes from the baseline model in a few
scenarios:

• Actions with a long temporal span—Fig. 2a, 3d, 4d;

• Actions in uncommon scene—Fig. 2c, 2d, 3b, 4b;

• Actions without co-occurring objects—Fig. 3a, 3c, 3d.

1



HMDB-51

UCF-101

Baseline DRL

Figure 1. t-SNE [13] visualization of UCF [12] and HMDB [8]
video features, extracted from TSM ResNet-50 [10] models with
standard (left) and DRL (right) pretraining.

C. Limitations and Future Work

Spatial appearance vs. temporal dynamics. While ex-
periments have confirmed the benefit of dynamic video rep-
resentations, we note that an inherent trade-off exists be-
tween spatial and temporal modeling within a given video
network. It is possible that spatial modeling is beneficial
and should be exploited for recognizing certain actions,
such as those that involve human-object interactions. By in-
troducing an objective and interpretable measure of spatial-
temporal bias of models, we expect that this work stimulates
more research in the vision community to study this trade-
off, as a guidance to building robust video action recogni-
tion systems.

Inductive biases of video networks. Towards the goal
of building video representations with more dynamics, a
parallel direction to this work is to design model architec-
tures with stronger inductive bias for long-range temporal
modeling. Recent progresses on video transformer mod-
els [1, 2, 3] present a promising direction thanks to the abil-
ity of self-attention layers to aggregate global information.
However, without careful design and proper regularizations,
even transformer models have been found to ignore tempo-
ral orders of input video sequence [3]. The findings of this
work show that unless bias is explicitly penalized, the net-
works will leverage it. Through the formulation of dynamic
score and DRL, we also anticipate more follow-up research
on analyzing the inductive biases of video recognition mod-
els, using both 2D/3D convolutional and transformer-based
architectures.

D. Assets & Licenses

All datasets used in this work are publicly available [4,
7, 8, 9, 11, 12, 14]. Table 3 lists the download page URL
and license (if provided) of each individual dataset.
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(a) Triple jump

Baseline Long jump.588

DRL Triple jump.563

(b) Changing wheel

Baseline Checking tires.620

DRL Changing wheel.570

(c) Feeding birds

Baseline Feeding fish.661

DRL Feeding birds.299

(d) Pushing cart

Baseline Reading book.103

DRL Pushing cart.326

Figure 2. Sample model predictions on test videos from Kinetics [7].
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(a) Juggling soccer ball

Baseline Skipping rope.174

DRL Juggling soccer ball.562

(b) Juggling balls

Baseline Punching person (boxing).175

DRL Juggling balls.961

(c) Playing tennis

Baseline Catching or throwing baseball.266

DRL Playing tennis.405

(d) Archery

Baseline Punching person (boxing).380

DRL Archery.222

Figure 3. Sample model predictions on test videos from Mimetics [14].



(a) Pour

Baseline Sword exercise.559

DRL Pour.656

(b) Fall on the floor

Baseline Punch.802

DRL Fall on the floor.661

(c) Dribble

Baseline Shoot ball.511

DRL Dribble.892

(d) Swing baseball

Baseline Throw.838

DRL Swing baseball.601

Figure 4. Sample model predictions on test videos from HMDB-51 [8].
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