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Abstract

The problem of learning an image classifier that allows

detection of out-of-distribution (OOD) examples, with the

help of auxiliary background datasets, is studied. While

training with background has been shown to improve OOD

detection performance, the optimal choice of such dataset

remains an open question, and challenges of data imbal-

ance and computational complexity make it a potentially

inefficient or even impractical solution. Targeted at bal-

ancing between efficiency and detection quality, a dataset

resampling approach is proposed for obtaining a compact

yet representative set of background data points. The re-

sampling algorithm takes inspiration from prior work on

hard negative mining, performing an iterative adversar-

ial weighting on the background examples and using the

learned weights to obtain the subset of desired size. Exper-

iments on different datasets, model architectures and train-

ing strategies validate the universal effectiveness and effi-

ciency of adversarially resampled background data. Code

is available at https://github.com/JerryYLi/

bg-resample-ood.

1. Introduction

While modern deep neural networks (DNN) achieve or

surpass human-level accuracy on image recognition tasks,

they are also notorious for producing overconfident deci-

sions on misclassified examples [11, 32], or even inputs that

do not belong to any training class [26, 2]. This is problem-

atic for many applications where a) inputs may come from

a different distribution than the training data, and b) relia-

bility of prediction is an important concern. Ideally, DNNs

should be able to discriminate “outliers” from regular test

data (from the training distribution), i.e. to detect out-of-

distribution (OOD) examples [13].

Recently, various approaches have been proposed to ad-

dress OOD detection in the context of DNNs that out-

put class probabilities from a softmax layer. Most of this

work focuses on improved training through input prepro-

cessing and/or additional loss functions [19, 24, 31, 6, 34].

A less explored alternative is to introduce auxiliary back-

ground data, sampled outside the training set, for which

the classifier is forced to produce low-confidence outputs

[22, 7, 14]. This has been proved effective, substantially

improving OOD detection quality with no training enhance-

ments other than application of a simple uniformity loss to

the background data. On the other hand, a large background

dataset, often tens of times the size of the in-distribution

(ID) training set, is required. This implies non-trivial in-

creases in storage space and time complexity.

In this work, we consider the problem of optimally com-

pressing a background dataset for OOD purposes. The goal

is to, starting from a large pool of background data, identify

a compact subset of similar OOD detection performance,

i.e. such that a model trained on the subset has identical

OOD performance to one trained on all the data. The trade-

offs involved in the selection of a good background dataset

are illustrated in Figure 1, where orange points represent the

ID dataset, open circles the pool of background data, and

gray examples the selected subset of OOD examples (OOD

dataset). Also shown as a shaded area is the decision rule

implemented by the optimal classifier for discrimination of

ID vs. OOD data (dark for ID, light for OOD).

When the OOD dataset is small, as in Figure 1a, train-

ing is efficient but leads to an inaccurate classifier, since

the OOD dataset only covers a small region of background

space. High classifier accuracy can be achieved with a very

large OOD dataset, as shown in Figure 1b, but this inef-

ficient in computation and memory. A final possibility is

to start from the large pool of background data and sample

a subset of examples. The simplest form of sampling, il-

lustrated in Figure 1c, is to choose samples independently,

using a uniform distribution over the background pool. This

is likely better than the approach of (b) but still suboptimal

in terms of classifier accuracy.

In this work, we seek to develop a sampling strategy

that achieves the optimal trade-off between efficiency and

OOD detection accuracy. For this, we draw inspiration

from hard negative mining in the object detection literature

[8, 10], treating OOD detection as a binary classification

problem with extremely imbalanced positive (ID) vs. neg-

ative (OOD) classes. In particular, we propose a dataset

resampling scheme that aims to selecting challenging back-

13218



(a) Small background dataset: Efficient but inaccurate. (b) Large background dataset: Accurate but inefficient.

(c) Uniformly resampled dataset: Efficient but inaccurate. (d) Adversarially resampled dataset: Accurate and efficient.

Figure 1: (a)–(c): Conventional approach for training outlier-aware classifiers. The performance grows with the size of background data,

but as does computational complexity and storage requirement. (d): Proposed dataset resampling scheme, which achieves both accuracy

and efficiency. Orange points represent in-distribution data, gray ones are background examples; shaded area denote the decision boundary

of trained OOD detector (within which the model predicts in-distribution).

ground images, which are frequently misclassified as in-

distribution. As shown in Figure 1d, these are likely to

be examples in the ID vs. OOD border. The proposed re-

sampling is based on the assignment of a resampling score

to each background example, derived from an adversarial

reweighting objective that gives higher priority to hard neg-

atives. Resampling scores are then determined by a new ad-

versarial algorithm that minimizes this objective by iterat-

ing between two gradient descent steps: 1) Classifier update

given reweighted data and 2) weight updates given the new

classifier. The learned weights are finally used to determine

sampling probabilities to perform example selection.

It is shown that training on the obtained subset of back-

ground data leads to similar or higher OOD detection accu-

racy than using the full background data, while significantly

reducing storage space needed per training episode. Experi-

ments also confirm that the proposed adversarial resampling

finds datasets of better trade-off between detection quality

and training efficiency than uniform example subsampling.

This is observed consistently across scenarios with different

model architectures, training pipelines and ID datasets.

2. Related Work

Self Awareness. A number of active research areas have

focused on the design of self-aware networks. These

are networks that “know when they don’t know.” Self-

awareness includes open set recognition, which adds un-

known classes to a traditional classification problem [2];

confidence calibration, which matches the network output

with the true likelihood [11]; and—to be studied in this

work—out-of-distribution (OOD) detection, which aims to

identify test inputs that come from a distribution different

from that seen at training time.

Out-of-distribution detection. The first procedure for

OOD detection on deep network classifiers was presented

in [13], using the maximum softmax score as an indicator

of the likelihood that the input image comes from the same

distribution as the training set. Without additional training,

the softmax score proved effective for simple in-distribution

data (like MNIST [21]) and trivial out-of-distribution exam-

ples (like uniform noise). However, the detection quality is

far from ideal for more complicated data.

Follow-up work has targeted to improve OOD detec-

tion performance by various training enhancements, in-

cluding input perturbations [19, 24], temperature scaling

[24], and network ensembles [19, 31]. Another line of ap-

proaches uses background examples that do not belong to

the training set, as surrogates for the unknown OOD exam-

ples at test time. In this case, the classifier is trained with

the additional objective of producing uniform (hence low-

confidence) softmax scores for background inputs. Back-

ground examples can be obtained from either an auxiliary

dataset [7, 14] or using a generative model [22]. In particu-

lar, [14] showed that large-scale datasets, like Tiny-Images

[29] and ImageNet [27], are surprisingly effective as back-

ground data, enabling classifiers to learn to discriminate

OOD inputs from in-distribution ones.

Training with background data. The use of background

data for training has been a standard practice in the design

of object detectors, which recognize image patches as fore-

ground (positive) or background (negative) [8, 10, 9]. Due

to the imbalance between positive and negative classes, the

selection of background patches is crucial for high detec-

tion accuracy, and the technique of hard negative mining is

commonly used to prioritize background examples that are

misclassified as foreground [5, 8].

Dataset resampling. Dataset resampling is the technique

of undersampling or upsampling examples in a dataset. It is
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Figure 2: Training pipeline with background examples.

traditionally used to combat class imbalance [3], but can be

extended to achieve a wide range of goals. One of the com-

pelling applications is compressing a dataset by discard-

ing examples with minimal influence on the performance

of trained models [20, 30]. Example selection is also useful

for speeding up training by prioritizing informative samples

[16], improving test accuracy by discarding examples with

noisy labels [1], or removing bias from the data [23].

3. Background Data for OOD Detection

In this section, we discuss the effect of auxiliary back-

ground data on the capacity of a trained model to detect

out-of-distribution text examples, and motivate the idea of

resampling the background dataset.

OOD Formulation. Following [7, 14] we assume a training

set-up where data batches are sampled from two datasets,

the in-distribution training set D and background data Db

(alternatively denoted by outlier exposure set DOE in [14]).

Classifier θ is then trained to meet two objectives: maximize

classification performance on D, while preventing overcon-

fident predictions on Db. This involves a trade-off as illus-

trated in Figure 2. While the first goal requires very confi-

dent predictions (posterior distributions of low entropy) for

in-distribution data, the second requires predictions of very

low confidence (high entropy distributions) for OOD data.

This is captured by the objective function

L(θ;D,Db) = Lin(θ;D) + αLout(θ;Db), (1)

where

Lin(θ;D) =
1

|D|

∑

(x,y)∈D

Lcls(f(x; θ), y) (2)

is a classification loss for in-distribution examples, and

Lout(θ;Db) =
1

|Db|

∑

(x,y)∈Db

Luni(f(x; θ)) (3)

a loss that penalizes high-confidence class predictions on

background examples. The hyperparameter α controls the

trade-off between the two objectives.

Losses. Unless otherwise noted, we use the standard cross-

entropy loss for in-distribution examples

Lcls(f(x; θ), y) = − log fy(x; θ), (4)

and the Kullback-Leibler divergence to a uniform class pos-

terior distribution for out-of-distribution inputs

Luni(f(x; θ)) = −
1

K

K
∑

k=1

log fk(x; θ)− logK. (5)

Probabilistic interpretation. Assuming that datasets D
and Db are sampled from the task distribution pX,Y (x, y)
and background distribution qX(x) respectively, (1) can be

interpreted as an empirical estimate of

L(θ; p, q) = EX,Y∼p(·,·)[Lcls(f(X; θ);Y )]

+ αEX∼q(·)[Luni(f(X; θ))].
(6)

For the specific losses of (4) and (5), the optimal classifier

under (1) is (see supplementary material for derivation)

f∗
k (x) = c(x)pY |X(k | x) +

1− c(x)

K
, (7)

a smoothed version of class probabilities pY |X by averaging

towards uniformity. The smoothing degree is controlled by

c(x) =
pX(x)

pX(x) + αqX(x)
. (8)

This can be interpreted as the posterior probability that x is

sampled from the task distribution p, given the prior belief

that the ratio of in-distribution to background data is 1 :
α. Hence, OOD detection reduces to the binary problem of

learning c(x). The k-way probability distribution pY |X(k |
x) in (7) is learned by standard classification algorithms.

Generalization behavior. The procedure above has been

shown unreasonably effective for OOD detection [22, 7,

14]. Models trained to produce low confidence class pre-

dictions on training background data Db, generalize well to

OOD test data Do, even when Db and Do come from vastly

different domains (e.g. natural images in Db and noise in

Do). While this generalization ability is not fully under-

stood, empirical studies have shown that a diverse set of

training background data is important for good test-time

performance [14]. On the other hand, it has been shown

that proximity between Db and D is critical as well [22, 7].

This poses a challenge, since it is usually difficult to find a

background dataset that is simultaneously diverse and close

to D. In this work, we propose to achieve this goal by se-

lecting examples from large-scale datasets.

4. Background Data Resampling

In this section, we introduce an objective for the opti-

mal resampling of background data for OOD detection, and

present a solution based on adversarial reweighting.
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4.1. Resampling Objective

Motivated by the observation that training OOD detec-

tors with a very large background dataset Db is effective yet

inefficient, we propose to sample a subset of examples D′
b

from Db, that simultaneously satisfies

1. Efficiency: Total number of selected examples should

not exceed a percentage γ ∈ (0, 1) of the original

dataset size, i.e.

|D′
b| ≤ γ|Db|. (9)

γ is denoted as the sample rate.

2. Effectiveness: The estimate of the optimal classifier

parameters under objective (1) produced with subset

D′
b and denoted

θ∗(D′
b) = argmin

θ

L(θ;D,D′
b), (10)

should be as close as possible to that obtained from all

background examples,

θ∗ = argmin
θ

L(θ;D,Db). (11)

The effectiveness of D′
b is defined as

E(D′
b) =

L(θ∗;D,Db)

L(θ∗(D′
b);D,Db)

. (12)

Since E(D′
b) only depends on D′

b through

L(θ∗(D′
b);D,Db), it is equivalent to optimize the for-

mer or the latter. Hence, the two goals above can be met by

solving the following constrained optimization problem

D∗
b = argmin

D′

b⊆Db

F [L(θ∗(D′
b);D,Db)] ,

subject to |D′
b| ≤ γ|Db|.

(13)

where F is a function discussed in Section 4.3. This, how-

ever, is a combinatorial problem whose complexity grows

rapidly with the size of background dataset |Db|, making it

impractical to find the exact solution. We next propose an

alternative solution based on learning to reweight examples.

4.2. Example Reweighting

Since the resampling objective of (13) is combinatorial,

we seek a differentiable relaxation based on a set of continu-

ous example weights. Formally, we assign to each example

xi ∈ Db a weight wi ≥ 0. By interpreting this weight as

the relative frequency of xi in the resampled subset D′
b, the

OOD detection loss after reweighting can be written as

Lout(θ;w) =
1

|D′
b|

∑

(x,y)∈D′

b

Luni(f(x; θ))

=
1

∑

i wi

|Db|
∑

i=1

wiLuni(f(xi; θ)).

(14)

The optimal parameter set of (10) is then

θ∗(w) = argmin
θ

L(θ;D, w) (15)

= argmin
θ

Lin(θ;D) + αLout(θ;w) (16)

and the optimization of (13) becomes

w∗ = argmin
w

F [L(θ∗(w);D,Db)] , (17)

under the size constraint that we leave for later discussion

in Section 4.3. This problem can be solved by alternatingly

optimizing for w and θ∗(w), i.e. iterating between (16) and

the solution of (17) given θ∗(w):

θ(t) = argmin
θ

[

Lin(θ;D) + αLout(θ;w
(t−1))

]

(18)

w(t) = argmin
w

F
[

Lin(θ
(t);D) + αLout(θ

(t), w)
]

(19)

The parameter update step of (18) consists of the design

of a classifier given the reweighted dataset, using a com-

bination of the cross entropy loss of (4) and the OOD de-

tection loss of (14), and solved by backpropagation. Given

suitable F , the weight update step of (19) is a continuous

function of w and can also be solved by backpropagation.

4.3. Adversarial Resampling

A natural choice for F is the identity. In this case, (17)

is equivalent to maximizing the effectiveness E(D′
b) of the

resampled dataset, given in (12). Hence, the steps of (18)

and (19) collaborate to find the most effective background

dataset. While intuitive, our experience is that this solu-

tion is too greedy and converges to poor local minima in a

few iterations. To see this, assume that the parameter up-

date step produced a solution θ(t). The weight update step

then seeks to minimize Lout(θ
(t), w). Under the constraint

of sampling rate γ, the optimal solution to this problem is to

assign all weight mass to the γ|Db| examples xi of lowest

Luni(f(xi, θ)), i.e. the examples of most uniform posterior

distribution under the classifier of parameters θ(t). These

are likely to be the examples xi farthest away from the re-

gion of support of the ID dataset D. At step t + 1 they are

unlikely to have large effect on the optimization of (18), be-

cause they already have a small OOD loss Lout(θ;w
(t−1)).

Hence, there is little incentive for θ(t+1) to differ much from

θ(t) and the optimization converges in a few iterations. In

summary, the problem is that the collaborative nature of

the two steps does not force the optimization to explore the

space of background datasets, or even select background ex-

amples that overlap with the ID dataset.

This observation motivated us to consider an alterna-

tive adversarial sampling strategy, where the weight up-

date step attempts to minimize the efficiency of the back-

ground dataset. This can be easily enforced by selecting
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Figure 3: Graphical illustration of proposed adversarial resampling procedure. Following Fig. 1, orange pts denote ID examples, gray ones

are background data, with darker shades representing higher resampling weights.

Algorithm 1: Adversarial resampling, batch version.

Input: ID dataset D, background dataset Db, pre-trained

classifier θ, learning rate ηθ , ηw, loss coefficient

α, total iterations T

Initialize: w(0) ← [1, . . . , 1], θ(0) ← θ;

for t = 0, . . . , T − 1 do

Compute ID loss l
(t)
in ← Lin(θ

(t);D);

Compute OOD loss l
(t)
out ← Lout(θ

(t);w(t));

Update classifier

θ(t+1) ← θ(t) − ηθ∇θ(t)

(

l
(t)
in + αl

(t)
out

)

;

Update weights

w(t+1) ← w(t) + ηw∇w(t) l
(t)
out ;

Output: Resampling weights w(T ).

F [L] = −L, leading to the procedure of Algorithm 1 (based

on batch gradient descent; see supplementary for practical

SGD optimization). In this case, as shown in Figure 3, given

θ(t), the optimal solution of (19) is to assign most weight to

the examples of largest OOD loss. These are the exam-

ples that have the least entropic posterior distribution and

are most likely to be close to the ID dataset D or even over-

lap it. Hence, at step t + 1, there is a strong incentive to

modify the parameters of the classifier, so as to minimize

the OOD loss component of (18). In result, the optimiza-

tion is forced to explore the space of background datasets,

choosing a background dataset of significant example diver-

sity and examples on the boundary between the ID data D
and the background data. It should be noted that this be-

havior is similar to that of hard negative mining techniques

used to tackle the imbalance between positive and negative

examples in object detection [5, 8, 10, 9].

It is also important to note that, under the adversar-

ial strategy, there are no trivial solutions to (19), and the

reweighting can be computed independently of the target

sampling rate γ. Once the optimal resampling weights

{wi}
|Db|
i=1 are found, the resampled dataset D′

b s obtained by

selecting each example xi independently with probability

pi = min

(

1,
γ|Db|
∑

j wj

wi

)

, (20)

leading to an expected dataset size of E[|D′
b|] =

∑

i pi ≤
γ|Db| that satisfies the efficiency constraint of (9).

In-dist. # train / # test Ref.

CIFAR-10 [18] 50,000 / 10,000 [13, 24, 22, 31, 6, 7, 14]

CIFAR-100 [18] 50,000 / 10,000 [13, 24, 31, 14]

Tiny ImageNet1 100,000 / 10,000 [14]

Out-of-dist. # test Ref.

Gaussian – [13, 24, 22, 31, 6, 14]

Uniform – [13, 24, 31, 6]

Textures [4] 5,640 [14]

LSUN [33] 10,000 [24, 22, 31, 6, 14]

SVHN [25] 26,032 [22, 7, 14]

Places [36] 328,500 [14]

Table 1: In-distribution and out-of-distribution datasets for exper-

imental evaluation. Most are common choices in prior work.

5. Experiments

In this section we present an experimental evaluation of

the proposed dataset resampling method.

5.1. Experimental Setup

Datasets. The OOD data for test-time evaluation is a pool

of datasets that do not overlap the in-distribution data used

to train the classifier. Since no universal protocol exists for

selecting the training dataset and OOD test sets, we use

the combination of noise and natural image datasets sum-

marized in Table 1. As shown in the table, most of these

datasets have been used in previous works.

Among the works that used background data for training,

there is also no agreement upon the selection of background

dataset Db: When training a CIFAR-10 classifier, [22] used

SVHN as Db, while [7] used CIFAR-100, and [14] Tiny

Images. We chose to instead use the ILSVRC’12 dataset

[27]. This was mostly for its diversity, making the back-

ground dataset a better representative of unseen OOD data.

We show in Section 5.2 that using ILSVRC as background

data does indeed enable superior detection performance on

test-time OOD datasets.

Models. We use a 40-layer Wide Residual Network (WRN)

[35], in alignment with previous work on OOD detec-

tion [13, 24, 31, 6]. The model is pre-trained on the in-

distribution dataset D for 100 epochs, and fine-tuned on

both D and the background data Db for another 50 epochs,

using the loss of (1). The initial learning rate is set to 0.1

for pre-training and 0.001 for fine-tuning, and is reduced by

10 times every 30 epochs. Like [14], we use α = 0.5 to

1https://tiny-imagenet.herokuapp.com/
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Figure 4: Detection AUPR% using different background datasets.

In-distribution dataset is CIFAR-10.

balance classification cross-entropy loss Lin and OOD de-

tection loss Lout. This ensures good separation of ID and

OOD examples, without significantly affecting the classifi-

cation accuracy on the test set (by ∼ 1%).

Criteria. Following [13, 24, 14] we use the maximum score

at the output of the softmax layer of classifier to decide on

ID vs. OOD and report the detection performance, measured

using three different criteria:

• FPR95: Detection false positive rate at 95% true pos-

itive rate, i.e. the proportion of ID data misclassified

as OOD, for detection threshold such that 95% of the

OOD examples are detected. Lower is better. Note that

we are treating OOD data as positive here.

• AUROC: Area under ROC curve, which plots the true

positive rate against false positive rate as detection

threshold increases from 0 to 1. Higher is better.

• AUPR: Area under precision-recall (PR) curve.

Higher is better. Also known as average precision, we

use AUPR in alignment with AUROC metric.

The sizes of OOD datasets differ greatly, creating a variable

ratio between positive and negative classes. This makes

the AUPR metric not directly comparable across datasets

(whereas FPR95 and AUROC remain relatively invariant).

To compensate for this we follow [14], which randomly

downsamples all OOD datasets to 20% of the ID dataset

size, with 5 repetitions per dataset, and report the average

OOD detection performance. Since the standard deviation

of most measurements is small, we leave it out of the main

text; see supplementary material for more details.

5.2. OOD Detection with Background Data

We start by investigating the effect of background

datasets on test time OOD detection accuracy. Using

CIFAR-10 as ID dataset D, we consider four choices of

background data Db: SVHN, CIFAR-100, Tiny Images, and

ILSVRC’12. We expect larger datasets to lead to better re-

sults, as they are more diverse and likely to cover the wide

spectrum of data unseen in D. Figure 4 compares the trained

models in terms of OOD AUPR. Several conclusions can be

Background Db FPR95 ↓ AUROC ↑ AUPR ↑
None [13], γ = 0 31.45 90.72 62.77

Full, γ = 100% 2.21 99.41 95.06

Random, γ = 10% 2.85 99.14 92.92

Resampled, γ = 10% 1.94 99.37 94.16

(a) In-distribution D = CIFAR-10.

Background Db FPR95 ↓ AUROC ↑ AUPR ↑
None [13], γ = 0 54.81 76.71 33.98

Full, γ = 100% 8.51 97.03 81.16

Random, γ = 10% 11.08 96.08 76.17

Resampled, γ = 10% 6.40 97.76 83.75

(b) In-distribution D = CIFAR-100.

Background Db FPR95 ↓ AUROC ↑ AUPR ↑
None [13], γ = 0 62.41 72.01 30.73

Full, γ = 100% 3.77 99.39 97.70

Random, γ = 10% 8.17 98.19 95.22

Resampled, γ = 10% 1.25 99.64 98.86

(c) In-distribution D = Tiny ImageNet.

Table 2: OOD detection performance (in %) on CIFAR-10,

CIFAR-100 and Tiny ImageNet, using different background data

for training. Results are averaged over 6 test OOD sets in Table 1;

see supp. material for individual measures.
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Figure 5: 5 most & least frequent background classes after resam-

pling for CIFAR-10 (left) and CIFAR-100 (right).

drawn. First, all models trained with background data im-

prove over the baseline (no background data) for at least

one of the background datasets. Second, Tiny Images and

ILSVRC’12 perform the best. This confirms the hypothesis

that large-scale background datasets improve OOD detec-

tion. Third, the classifier trained with ILSVRC’12 back-

ground data performed the best in 5 of 6 test sets, achieving

an average AUPR of 95.06%. For this reason, ILSVRC is

used as source of background data in the remaining exper-

iments. It should be noted, however, that the performance

gains cannot be explained uniquely by dataset size. For ex-

ample, the model trained on 80 million Tiny Images has an

average AUPR of 89.45%. This is lower than that of the

model trained on the 1.28 million examples of ILSVRC’12.

5.3. Background Data Resampling

While large-scale background datasets like ILSVRC’12

improve OOD detection, they require a non-trivial increase

in storage space relative to the ID training set. We next

evaluate the OOD detection of convnets trained on different

ID datasets. In all cases background examples are ILSVRC

images, but selected with different approaches:
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(a) CIFAR-10 vs. CIFAR-100. (b) CIFAR-100 vs. Tiny ImageNet. (c) Tiny ImageNet vs. CIFAR-10.

Figure 6: Correlation plots of ISLVRC resampling weights for different ID dataset pairs (left) and overlap between resampled data (right).

• No background data: The standard cross-entropy clas-

sifier baseline.

• Full background data: Optimizes the OOD detection

loss of (3) on all examples of Db. This requires the

most additional space & time complexity.

• Random selected background data: Optimizes (3) on

a random subset of 10% examples from Db.

• Resampled background data: Optimizes (3) on the

subset of examples from Db produced by the proposed

dataset resampling algorithm.

For a fair comparison, we perform example selection using

sampling rate γ = 0.1; the effect of varying γ is discussed

in section 5.4. See supplementary material for further im-

plementation details of the resampling.

Detection quality. Table 2 summarizes the results averaged

over all OOD datasets (see supplementary for breakdown

by test set). Confirming the observations of [14], all meth-

ods that use background data substantially outperform the

standard cross-entropy classifier. When background data

is used, uniformly subsampling degrades the OOD detec-

tion accuracy of using full Db. The proposed resampling

method, however, does not suffer from the same perfor-

mance loss. Notably, on CIFAR-100 and Tiny ImageNet,

models trained with 10% background data even outperform

their counterparts trained on the full background. This is

likely due to the emphasis of resampling on examples close

to the in-distribution, forcing the network to learn a more

precise decision boundary.

Resampled data. Figure 5 shows the background classes

most upsampled and downsampled through the resampling

process. It can be observed that the proposed algorithm has

a clear preference towards classes semantically close to the

ID dataset: Of the five most frequent classes in the resam-

pled background data for CIFAR-10, tabby/Egyptian cat,

airliner and convertible are closely related to ID classes cat,

airplane and automobile respectively. This makes intuitive

sense as the model trained on CIFAR-10 is likely to pro-

duce high confidence outputs for these images, failing to

discriminate them from ID data.

Figure 6 shows the scatter plots for the weights learned

for pairs of ID datasets, as well as their rank correlation co-

efficients [28, 17]. We also visualize the ratio of overlap be-

tween the resampled datasets using both sets of weights as

the sampling rate γ varies and compare it to chance level.

A large weight correlation implies that the optimal back-

ground datasets for the two training sets share more exam-

ples in common. This is a desirable property, as the resam-

pled dataset learned for one in-distribution task could be

used to train other datasets. Indeed, it can be observed that

the examples learned for CIFAR-100 were positively cor-

related with those for CIFAR-10 and Tiny ImageNet. We

will see in Section 5.5 that these examples do generalize as

background data across tasks.

5.4. Training on Resampled Datasets

Sampling rate. Having seen that it is possible to drastically

reduce the size of background data while maintaining the

OOD detection accuracy, we further reduce the sampling

rate to γ = 0.01 to investigate the effectiveness of the pro-

posed approach under conditions where the storage budget

is very limited. Figure 7a illustrates the detection perfor-

mance as a function of the size of background dataset. The

models trained using both proposed and randomly resam-

pled data saw a drop in OOD detection performance as γ is

further decreased, yet the advantage of adversarial resam-

pling over random selection remains significant.

Auxiliary OOD training. We note that all experiments

above have used the KL divergence to uniform distribu-

tion on the background data as training-time OOD detec-

tion loss (5), the standard approach adopted in [22, 7, 14].

Also canonically, OOD detection at test-time is performed

by thresholding the maximum softmax scores [13]. We now

evaluate the compatibility of the proposed resampled back-

ground datasets with alternative methods commonly used

for out-of-distribution detection:

• Entropy maximization replaces the uniformity loss of

(5) by the negative entropy of posterior probabilities

predicted by the classifier, given by Lent(f(x; θ)) =
∑K

k=1 fk(x; θ) log fk(x; θ).

• ODIN [24] uses two simple techniques at training time

to calibrate classifier predictions, namely temperature-

scaled softmax sk(T ) =
evk/T

∑K
j=1 e

vj/T
, and input pertur-

bation x̂ = x+ ǫ sign(∇x logmaxk sk(T )).
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Figure 7: Training with resampled background datasets.

Background Db
Architectures

WRN40 WRN28 Res18 Dense100

Random, γ = 10% 76.17 86.71 74.38 74.72

Transferred, γ = 10% – 87.33 81.48 76.50

Native, γ = 10% 83.75 86.05 80.75 74.95

Random, γ = 1% 63.84 81.53 74.46 66.96

Transferred, γ = 1% – 85.88 76.97 75.81

Native, γ = 1% 80.54 85.68 78.28 76.93

(a) AUPR% of new model architectures trained on CIFAR-100. All trans-

ferred background data are resampled for WRN40; while native ones are

resampled for their respective architectures.

Background Db
In-distribution D

CIFAR100 CIFAR10 TinyImgNet

Random, γ = 10% 76.17 92.92 95.22

Transferred, γ = 10% – 94.56 97.45

Native, γ = 10% 83.75 94.16 98.79

Random, γ = 1% 63.84 91.54 83.68

Transferred, γ = 1% – 94.12 94.82

Native, γ = 1% 80.54 94.50 93.10

(b) AUPR% of WRN-40 models trained on new datasets. All trans-

ferred background data are resampled for CIFAR-100; while native

ones are resampled for their respective ID datasets.

Table 3: Generalization capacity of resampled data across models (left) and in-distribution datasets (right).

• Objectosphere loss [7] aims at minimizing the feature

magnitude of background examples, which naturally

results in a uniform classifier output when the classifi-

cation layer has no bias term.

Figure 7b shows the OOD detection performance when

the model is trained and/or tested using the above ap-

proaches, again on full, random and resampled background

data learned earlier. The resampling method provides con-

sistent improvement over random sampling, proving to be a

reliable complementary to previously proposed algorithms.

5.5. Generalization in Retraining

One of the greatest advantage of having a compact and

representative set of background examples is that the stor-

age space and time complexity are greatly reduced. This

is especially relevant in the scenario where models are re-

trained multiple times, either with different architectures or

on a different dataset. Therefore, it would be desirable that

the resampled dataset remains effective when model archi-

tectures, training procedure, and ID datasets change. In the

following experiments we re-evaluate the OOD detection

quality of models under these changes, as a measure of gen-

eralization capacity of the resampled dataset.

Across model architectures. We start by considering

whether the weights learned with a WRN-40 [35] classifier

are effective for convnets with other architectures. Table

3a shows the OOD detection performance of these weights

for three alternative architectures: WRN-28, DenseNet-100

[15], and ResNet-18 [12]. The table shows that there is a

noticeable advantage of using resampled datasets over ran-

dom selection, even when retraining different networks. In

many instances, using the transferred background data from

WRN-40 even provides similar performance to when using

the optimal resampled dataset for the new model.

Across in-distribution datasets. The correlation plots of

Figure 6 suggest that resampled dataset for one ID dataset

may be helpful for training new datasets. Table 3b shows

the OOD detection performance of retrained models on

CIFAR-10 and Tiny ImageNet, using the resampled back-

ground data learned for CIFAR-100. Again, the weights

learned by the proposed algorithm demonstrated its robust-

ness across tasks, yielding comparable OOD detection per-

formance to native resampling. We find this result rather

inspiring, as it shows the potential of building a universal

background set of examples that can be used to augment an

arbitrary dataset to make it compatible for OOD detection.

6. Conclusion

We presented a resampling approach to select informa-

tive background examples from large-scale datasets for out-

of-distribution detection. Motivated by hard negative min-

ing in object detection, we developed an adversarial opti-

mization procedure that learns a set of weights for selecting

challenging background examples. Using a small sampling

rate, we were able to obtain compact resampled datasets that

are often as effective as using full background data, some-

times even improving OOD detection quality. The resam-

pling method was shown to work well in conjunction with

auxiliary training algorithms in the literature, and general-

izable across models and in-distribution tasks.
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