
Background Data Resampling for Outlier-Aware Classification
Supplementary Material

Yi Li Nuno Vasconcelos
University of California, San Diego
{yil898,nvasconcelos}@ucsd.edu

A. Probabilistic Interpretation
We show that under the training pipeline described in

Section 3 of main text, the optimal classifier output is a
smoothed version of the posterior class probabilities. Sup-
pose the in-distribution examples are input-label pairs sam-
pled from X,Y ∼ p(x, y) with Y ∈ {1, . . . ,K}, while
background examples are unlabeled images that follow
Xb ∼ q(x). Consider a classifier which predicts K-way
class probabilities f(x; θ) through a softmax mapping from
logits v(x; θ) ∈ RK :

fk(x; θ) =
evk(x;θ)∑K
j=1 e

vj(x;θ)
. (1)

The classifier is trained on both in-distribution and back-
ground data to minimize the combined loss

L(θ; p, q) = EX,Y∼p(·,·)[Lcls(f(X; θ);Y)]

+ αEX∼q(·)[Luni(f(X; θ))].
(2)

where we consider the popular instantiation of

Lcls(f(x; θ); y) = − log fy(x; θ); (3)

Luni(f(x; θ)) = −
1

K

K∑
k=1

log fk(x; θ)− logK. (4)

Theorem 1. Under the loss functions defined by (3) and
(4), the objective (2) is minimized when

f∗k (x; θ) = c(x)pY |X(k | x) + 1− c(x)
K

, (5)

c(x) =
pX(x)

pX(x) + αq(x)
. (6)

where pX(x) =
∑K
k=1 p(x, k) and pY |X(k | x) = p(x,k)

pX(x) .

Proof. The expectations in (2) are expanded into

L =−
∫
pX(x)

K∑
k=1

pY |X(k | x) log fk(x; θ) dx

− α

K

∫
q(x)

K∑
k=1

log fk(x; θ) dx− α logK. (7)

Using the relation log fk = vk− log
∑
j e
vj that follows

the definition of (1), we have L =
∫
l(x) dx with

l(x) =− pX(x)

(∑
k

pY |X(k | x)vk − log
∑
k

evk

)

− αq(x)

(
1

K

∑
k

vk − log
∑
k

evk

)
− α logK;

(8)

taking its gradient w.r.t. classifier logits v(x; θ) gives

∂l(x)

∂vk
=− pX(x)

(
pY |X(k | x)− fk(x; θ)

)
− αq(x)

(
1

K
− fk(x; θ)

)
. (9)

Setting the gradient to zero leads the optimal solution of
fk(x; θ) in the form of (5), which minimizes the integral L.

B. Mini-batch Dataset Resampling

We present the mini-batch version of the adversarial re-
sampling algorithm described in Section 4.3 of main text.
In practice, because training is done in stochastic batches,
we expect that the data sampler would respect the weights
by selecting examples with higher w more frequently. This
is realized by decomposing the weighted loss into

Lout =

|Db|∑
i=1

wεi
Z

(
Zw1−ε

i∑
j wj

Luni(f(xi; θ))

)
, (10)

where ε ∈ (0, 1) controls the degree to which the SGD sam-
pler depends on the weights w(t); Z =

∑
i w

ε
i is a normal-

ization factor. Mini-batch selection is performed with prob-
ability

pi(w; ε) =
wεi
Z

=
wεi∑
j w

ε
j

, (11)

1

Algorithm 1: Adversarial resampling, stochastic
mini-batch version.

Input: ID dataset D, background dataset Db, batch size
n, sampler coefficient ε, pre-trained classifier θ,
learning rate ηθ , ηw, loss coefficient α, total
iterations T

Initialize: w(0) ← [1, . . . , 1], θ(0) ← θ;

for t = 0, . . . , T − 1 do
Sample in-dist. mini-batch B(t) ← {(xi, yi)}ni=1

from D with uniform probabilities;
Sample background mini-batch B(t)

b ← {x
b
i}ni=1

from Db with probabilities pi(w(t); ε) using (11);

Compute ID loss l(t)in ← Lin(θ
(t);B(t));

Compute OOD loss l(t)out ← Lout(θ
(t);B(t)

b , w̃(t)) with
weights w̃(t)

i = ri(w
(t); ε) using (12);

Update classifier
θ(t+1) ← θ(t) − ηθ∇θ(t)

(
l
(t)
in + αl

(t)
out

)
;

Update weights
w(t+1) ← w(t) + ηw∇w(t) l

(t)
out ;

Output: Resampling weights w(T).

and the uniformity loss for each example within the batch is
reweighted by

ri(w; ε) =
Zw1−ε

i∑
j wj

=

∑
j w

ε
j∑

j wj
w1−ε
i . (12)

C. Implementation Details

Instead of directly optimizing the weights {wi} subject
to the constraint wi > 0, we use softplus reparameteriza-
tion wi = log(1 + eωi) and optimize {ωi} unconstrained
to ensure that all weights are positive. Mini-batch based re-
sampling, as described in Algorithm 1, is implemented us-
ing the hyperparameter choices in Table 1 (see Section 5.1
of main text for additional training details).

Input pre-processing is done as follows: All images are
resized to 32 pixels on the shorter edge, randomly cropped
at 32×32 before zero-padding 4 pixels each side, then hor-
izontally flipped with probability 50% (except for SVHN
dataset which contains digits). Pixel values are scaled to
[0, 1] and normalized using mean 0.5 and standard deviation
0.25 regardless of datasets, since the source of test examples
is always assumed unknown.

This work is implemented using the PyTorch library [2];
the Python code for 1) pre-training classifiers, 2) adversarial
resampling, 3) retraining with resampled background data,
and 4) evaluating OOD detection of trained classifiers, are
provided along with this PDF.

Sampler coefficient ε 0.5
Sampler batch size n 128

Reweighting step size ηw 100
Classifier step size ηθ 0.001

Classifier momentum β 0.9
Classifier weight decay λ 0.0005

Table 1. Hyperparameters for adversarial resampling.

0.0 0.5 1.0
Softmax Score

101

102

103

Co
un

t

Random, 10%

0.0 0.5 1.0
Softmax Score

101

102

103

Co
un

t

Resampled, 10%

0.0 0.5 1.0
False Positive

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

Resampled, 10%
Random, 10%

0.0 0.5 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Resampled, 10%
Random, 10%

Figure 1. Qualitative result w/ in-distribution D = Tiny ImageNet
and out-of-distribution Do = SVHN, where using resampled data
provides significant improvement over randomly selecting back-
ground data. Top: Separation of ID (blue) and OOD (red) exam-
ples by softmax score. Bottom: Detection ROC and PR curves.

D. OOD Detection Results by Dataset
Table 2 is a breakdown of the OOD detection results for

each out-of-distribution dataset used in the main text. Train-
ing on the resampled data provides significant improvement
over using random background data, even outperforming
full background in detecting challenging OOD examples
like SVHN; the most dramatic difference is observed when
Tiny ImageNet is used as in-distribution dataset, as visu-
alized in Figure 1. Notice from the histograms that using
resampled vs. random background dataset does not affect
the softmax scores of ID examples as much as it does for
the OOD examples, which is desired as we do not want to
sacrifice in-distribution classification performance.

E. Classification Accuracy
Table 3 compares the in-distribution classification accu-

racy of trained models. Training with background samples
improves baseline accuracy on CIFAR-10 and Tiny Ima-
geNet, possibly due to the additional training data that re-
duces overfitting, but differences are small.

ID data D OOD data Do
Background data Db

None [1] (γ = 0) Full (γ = 100%) Random (γ = 10%) Resampled (γ = 10%)

CIFAR-10

Gaussian 7.13.12 / 96.93.02 / 76.94.15 1.18.03 / 99.45.00 / 91.82.02 2.23.09 / 99.07.02 / 88.78.08 1.78.06 / 99.19.01 / 89.51.05
Uniform 7.15.18 / 96.80.05 / 74.99.34 2.05.09 / 99.15.02 / 89.59.13 4.29.11 / 98.38.02 / 84.52.09 2.36.04 / 98.95.01 / 87.16.08
Textures 62.412.23 / 85.54.27 / 53.36.48 1.16.04 / 99.63.03 / 97.88.08 1.30.10 / 99.54.02 / 96.96.07 1.10.03 / 99.71.01 / 98.05.04
LSUN 49.101.79 / 86.54.19 / 52.14.65 0.58.03 / 99.83.00 / 98.76.01 0.66.01 / 99.76.01 / 97.99.05 0.60.03 / 99.84.00 / 98.83.03
SVHN 20.46.72 / 92.85.21 / 66.48.72 7.27.72 / 98.69.09 / 94.03.25 7.58.70 / 98.43.06 / 91.74.16 4.90.29 / 98.79.03 / 92.96.11
Places 55.073.15 / 85.65.50 / 52.73.87 1.03.05 / 99.70.03 / 98.25.07 1.04.04 / 99.63.02 / 97.55.06 0.87.07 / 99.76.02 / 98.42.08

Average 31.45 / 90.72 / 62.77 2.21 / 99.41 / 95.06 2.85 / 99.14 / 92.92 1.94 / 99.37 / 94.16

CIFAR-100

Gaussian 34.95.33 / 77.98.12 / 28.15.12 4.04.04 / 97.85.02 / 78.31.17 8.36.08 / 95.78.03 / 66.12.08 2.20.03 / 98.64.01 / 84.22.15
Uniform 17.73.25 / 91.81.06 / 53.87.32 5.73.10 / 96.74.02 / 70.16.13 10.97.30 / 94.30.11 / 59.37.37 2.39.00 / 98.41.01 / 81.14.14
Textures 67.42.65 / 73.61.37 / 32.34.71 7.07.47 / 98.06.12 / 90.46.22 9.94.35 / 97.26.06 / 87.76.11 4.66.15 / 98.56.06 / 90.42.22
LSUN 74.161.36 / 70.54.50 / 27.77.65 2.15.24 / 99.38.04 / 95.74.16 2.40.03 / 99.18.04 / 93.00.13 2.84.26 / 99.04.04 / 91.18.18
SVHN 63.391.16 / 73.43.19 / 30.31.23 29.04.67 / 91.04.11 / 57.86.45 31.26.98 / 91.09.09 / 58.56.32 22.70.87 / 92.97.07 / 64.01.39
Places 71.20.94 / 72.89.37 / 31.42.54 3.04.11 / 99.08.05 / 94.42.09 3.52.20 / 98.86.08 / 92.23.16 3.59.29 / 98.92.03 / 91.51.20

Average 54.81 / 76.71 / 33.98 8.51 / 97.03 / 81.16 11.08 / 96.08 / 76.17 6.40 / 97.76 / 83.75

Tiny-ImageNet

Gaussian 49.73.21 / 74.38.21 / 26.65.20 0.30.01 / 99.83.00 / 97.34.03 0.15.00 / 99.92.00 / 98.93.03 0.11.01 / 99.98.00 / 99.90.00
Uniform 26.63.51 / 90.35.08 / 54.33.33 0.20.00 / 99.86.00 / 98.03.03 0.10.00 / 99.96.00 / 99.35.03 0.09.01 / 99.99.00 / 99.92.00
Textures 75.26.26 / 66.00.43 / 25.53.36 0.85.09 / 99.67.02 / 99.05.04 0.89.14 / 99.41.06 / 98.63.10 0.53.06 / 99.81.04 / 99.34.06
LSUN 81.30.67 / 61.78.32 / 21.51.20 0.00.00 / 99.97.02 / 99.93.02 0.00.00 / 99.96.02 / 99.90.02 0.00.00 / 99.98.00 / 99.93.01
SVHN 63.671.33 / 74.46.48 / 32.62.64 21.252.93 / 97.01.22 / 91.92.39 47.841.97 / 89.97.52 / 74.70.76 6.74.75 / 98.11.14 / 94.16.18
Places 77.881.29 / 65.08.40 / 23.72.37 0.00.00 / 99.98.00 / 99.91.01 0.02.00 / 99.92.04 / 99.79.07 0.01.01 / 99.97.01 / 99.90.03

Average 62.41 / 72.01 / 30.73 3.77 / 99.39 / 97.70 8.17 / 98.19 / 95.22 1.25 / 99.64 / 98.86

Table 2. Breakdown of OOD detection performance (FPR95 ↓ / AuROC ↑ / AuPR ↑), reported in MeanStd over 5 runs.

BG data Db \ ID data D C-10 C-100 TIN
None, γ = 0 94.19 74.77 52.98

Full, γ = 100% 94.29 73.76 54.82
Random, γ = 10% 94.33 73.81 54.99

Resampled, γ = 10% 94.26 73.75 54.21

Table 3. Classification accuracy% of trained models.

References
[1] Dan Hendrycks and Kevin Gimpel. A baseline for detecting

misclassified and out-of-distribution examples in neural net-
works. In International Conference on Learning Representa-
tions (ICLR), 2017. 3

[2] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017. 2

