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The supplemental material is organized as follows: Ap-
pendix A provides implementation details of SViTT, meta-
data of all datasets, as well as training setups for pre-training
and downstream tasks. Appendix B contains additional ab-
lation studies and qualitative analysis. Discussion of limita-
tions and future work is finally included in Appendix C.

A. Implementation Details

A.1. Model Architecture

Sparse configurations. The sparsity of SViTT is con-
trolled by the following hyperparameters:

• Visual token keep rate q
(l)
v and multimodal token keep

rate q
(l)
m per layer l for node sparsity;

• Local attention blocks Kl, random attention blocks Kr

and block size G shared across layers for edge sparsity.

Tab. A1 lists the configurations for each stage of pre-
training and the corresponding sparsity s, computed as the
percent of reduction in edges of sparsified attention graph G
from that of a dense transformer. For the lth layer of visual
encoder fv , the number of edges is given by

|E(l)
v | = N (l)

v (Kl +Kr)G (1)

where input length N
(l)
v = ⌈q(l−1)

v N
(l−1)
v ⌉. For multimodal

layers fm, the edge count is

|E(l)
m | = N (l)

m Nt (2)

where Nt denotes text length and N
(l)
m = ⌈q(l−1)

m N
(l−1)
m ⌉.

Therefore an SViTT model with Lv = 12 visual layers and
Lm = 3 multimodal layers has overall edge sparsity

S(qv, qm,Kl,Kr) = 1−
∑Lv

l=1|E
(l)
v |+

∑Lm

l=1|E
(l)
m |

LvN2
v + LmNtNv

(3)

Frames Attn. blocks Keep rate Edges (M) Sparsity
T Kl,Kr, G qv, qm |E| S

4
(1, 3, 56)

(0.7, 0.1) 1.48 0.80
8 (0.6, 0.1) 2.60 0.91

16 (0.5, 0.1) 4.61 0.96

Table A1. SViTT Configurations. We report hyperparameters
controlling the edge and node sparsity for different clip lengths T ,
as well as the overall sparsity as computed by Eq. (3).

Temporal expansion. Transformer architectures do not
require fixed input lengths as its operations are either point-
wise (e.g. FFN) or permutation equivariant (e.g. MHSA).
This makes the temporal expansion (Sect. 4) of input clips a
mostly trivial process, except for the position embeddings,
which does depend on spatiotemporal dimensions of inputs.
Following prior work on training video transformers with
image models, we inflate the 2D positional embedding

P = [pcls,p1,1, . . . ,pH,W ] ∈ R(HW+1)×d (4)

into a 3D embedding tensor

P′ = [pcls,p
′
1,1,1, . . . ,p

′
T,H,W ] ∈ R(THW+1)×d (5)

for inputs of T frames, by duplicating the local embeddings
phw along the temporal dimension:

p′
t,h,w = ph,w, ∀t, h, w (6)

Likewise, expansion of clip length from T1 to T2 can be
performed by temporally resizing the positional embedding,
e.g. through nearest neighbors interpolation:

p′
t,h,w = p⌊t·T1

T2
+ 1

2 ⌋,h,w
, ∀t, h, w (7)

The BEiT backbone of visual encoder uses relative posi-
tion bias [22] in every self-attention layer, which encodes a
scalar added to each entry of the similarity matrix depend-
ing on the relative position between query and key patches:

A(Q,K,V) = σ(QKT +B)V, (8)

B(h,w),(h′,w′) = Rh′−h,w′−w (9)
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Dataset Avg. Dur. # Videos # Sent. / Q.

Video-Text Pre-Training

WebVid-2M [2] 18s 2.5M 2.5M

Text-to-Video Retrieval

MSR-VTT [27] 15s 10K 200K
DiDeMo [1] 28s 10K 40K
Charades [24] 30s 10K 16K
SSv2-Label [12] 4s 171K 112K

Video Question Answering

MSRVTT-QA [25] 15s 10K 244K
ActivityNet-QA [28] 180s 5.8K 58K
AGQA 2.0 [10] 30s 10K 2.27M

Table A2. Pre-Training and Downstream Datasets.

where R ∈ R(2H−1)×(2W−1) are learnable parameters.
When expanding the input to multi-frame clips, we again
inflate the relative position bias to the temporal dimension:

B′
(t,h,w),(t′,h′,w′) = R′

t′−t,h′−h,w′−w, (10)

R′ ∈ R(2T−1)×(2H−1)×(2W−1) (11)

R′ is initialized by interpolating R temporally, identical to
the procedure for absolute positional embedding P′.

A.2. Datasets

Pre-training. SViTT is pre-trained on WebVid-2M [2]
with 2.5 million video-text pairs scraped from the Inter-
net. While alternative datasets exist for video-language pre-
training such as HowTo100M [20] and YT-Temporal [30],
we choose WebVid as it has higher caption quality, covers a
wide range of scenes, and can be trained with a reasonable
amount of resource.

Text-to-video retrieval. We evaluate text-to-video re-
trieval on 4 datasets: MSR-VTT [27], DiDeMo [1], Cha-
rades [24] and Something-Something v2 [8]. MSR-VTT
and DiDeMo are video-text datasets commonly used in
prior work; Charades and SSv2 were initially collected
for video action recognition, with an emphasis on human-
object interactions and temporal modeling, but also includes
text descriptions for each video clip.

Video question answering. Video question answering
is evaluated on MSRVTT-QA [25], ActivityNet-QA [28]
and AGQA 2.0 [10], annotated on top of the videos from
MSR-VTT [27], ActivityNet [5] and Charades [24] respec-
tively. MSRVTT-QA consists of mostly descriptive ques-
tions which can be solved without intricate temporal rea-
soning. ActivityNet-QA focuses on human actions and spa-

tiotemporal relation between objects, posing a greater chal-
lenge beyond frame-based reasoning. AGQA contains diffi-
cult questions involving the composition of actions, testing
the generalization capacity of video-text models.

Tab. A2 summarizes the statistics of all aforementioned
datasets.

A.3. Training Details

Pre-training tasks. SViTT is pre-trained on three losses
following prior art in VLP [6, 7, 12, 14, 15].

• Video-text contrastive (VTC) applies InfoNCE loss be-
tween the video embeddings Zv and text embeddings
Zt extracted at [cls] locations of their respective en-
coder fv and ft:1

LVTC = ℓc(Zv,Zt) + ℓc(Zt,Zv), (12)

ℓc(X,Y) = −
B∑
i=1

log
e⟨xi,yi⟩/τ∑B
j=1 e

⟨xi,yj⟩/τ
(13)

• Video-text matching (VTM) learns a binary classifier
on top of the [cls] output of multimodal encoder fm
to discriminate between paired and misaligned video-
text pair, optimized by binary cross entropy:

LVTM = −
B∑
i=1

(
log(fm(zv,i, zt,i))

+ log(1− fm(zv,i, zt,i′))
)

(14)

where i′ ̸= i is a randomly selected negative sample.

• Masked language modeling (MLM) requires the mul-
timodal encoder fm to predict randomly masked out
text tokens conditioned on the rest of text and video
sequence, through a cross-entropy loss:

LMLM = −
B∑
i=1

∑
j∈J

[xt]
T
i,j logyi,j (15)

where [xt]i,j is a one-hot vector denoting the word at
location j of example i, yi,j is the classifier output pre-
dicting the word at the same location, and J is the set
of masked indices.

We use equal weights for all three losses.

Downstream tasks. We follow the downstream evalua-
tion setup of Singularity [12] for the most part. Text-to-
video retrieval is performed by ranking all candidate videos
xv of the test set by their matching scores to text query xt.
For video QA, a transformer decoder is applied on top of
multimodal encoder fm to generate the answer.

1Linear projection on top of zv , zt omitted.



MSR-VTT DiDeMoMethod PT Frames Sparsity R1 R5 R10 Mean R1 R5 R10 Mean

VideoCLIP [26] 100M — 10.4 22.2 30.0 20.9 16.6 46.9 — —
Frozen [2] 5M 4 23.2 44.6 56.6 41.5 21.1 46.0 56.2 41.1
ALPRO [13] 5M 8 24.1 44.7 55.4 41.4 23.8 47.3 57.9 43.0
VIOLET [7] 5M 4 25.9 49.5 59.7 45.0 23.5 49.8 59.8 44.4
Singularity [12] 5M 1

—

28.4 50.2 59.5 46.0 36.9 61.1 69.3 55.8
1 21.1 42.1 53.0 38.7 23.3 45.4 53.7 40.8
4 24.4 43.8 51.7 40.0 26.4 48.7 57.3 44.1Singularity* 2M
8

—
24.3 44.5 54.3 41.0 25.8 50.0 60.7 45.5

Dense 26.0 47.7 57.1 43.6 29.6 54.1 64.1 49.3
SViTT 2M 8 Hybrid 25.4 48.4 57.5 43.8 31.0 57.2 66.3 51.5

Table A3. Zero-shot Text-to-video Retrieval. Results reported in prior works marked in gray; * indicates our reproduced results.

Task Pre-training Video-text Retrieval Video QA
Frames T 4 8 16 4 8 16 8

Epochs 10 15 5 (1 for AGQA)
Warm-up 1 0 0
Batch size 512 336 192 64 48 32 128
Learning rate 3× 10−5 1× 10−5 5× 10−6 1× 10−5 5× 10−5

Weight decay 0.02 0.02 0.02

Text length 32 32 (64 for DiDeMo) 25 (Q), 5 (A)
Attn. blocks (Kl,Kr, G) (1, 3, 56) (1, 3, 56) (1, 3, 56)
Keep rate (qv, qm) (0.7, 0.1) (0.6, 0.1) (0.5, 0.1) (0.7, 0.1) (0.6, 0.1) (0.5, 0.1) (0.6, 0.5)

Table A4. Training Hyperparameters.

Training hyper-parameters. We use a sparse frame sam-
pling strategy following [2,7,12], splitting input videos into
T chunks and randomly selecting one frame from each dur-
ing training. Video frames are preprocessed with random
resized cropping into spatial resolution of 224 × 224, re-
sulting in 14×14 spatial patches. All models are optimized
using AdamW [17] (β1 = 0.9, β2 = 0.999) with a cosine
learning rate schedule and warm-up training. We use 10
epochs for pre-training and 15 for fine-tuning on all datasets
other than AGQA, which uses 1 epoch due to its large size.
Batch size B and learning rate η are adjusted depending on
memory costs of sparse models. Tab. A4 summarizes the
hyperparameters used for each task and model variant.

B. Additional Results & Analysis
B.1. Retrieval Metrics

We include full retrieval results with Recall@{1, 5, 10}
in Tab. A3 (zero-shot) and Tab. A5 (fine-tuned).

B.2. Video-Text Backbone

In addition to the Singularity baseline with BEiT-B back-
bone used in the main paper, we also evaluate SViTT on a

simpler structure from Frozen [2]. This is also a two-tower
model with separate video and text encoders fv, ft, but un-
like most vision-language transformers, does not contain a
cross-modal encoder on top. Frozen is trained solely on the
InfoNCE loss between video and text embeddings, and uses
their cosine similarity to perform retrieval. While the cross-
modal node sparsification does not apply to this framework,
visual node sparsity and edge sparsity can still be applied
to the visual encoder fv to enable temporal learning across
frames.

The original Frozen model uses a divided space-time at-
tention similar to TimeSformer [4], where temporal atten-
tion is added to a pre-trained ViT and initialized as identity
mapping. During early experiments, however, we find that
the temporal module with zero-init fails to learn meaningful
attention across frames, with query and key matrices stuck
at zero weights. We opted to remove the temporal atten-
tion modules and make the spatial attention global instead
(i.e. each token attends to every token from the video clip,
instead of just those from the same frame).

Tab. A6 shows the performance of SViTT applied to the
Frozen model. Similar to the results in the main paper, our
dense spatiotemporal transformer with the above modifica-



Charades SSv2-LabelMethod PT Frames Sparsity R1 R5 R10 Mean R1 R5 R10 Mean

Frozen [2] 5M 32 11.9 28.3 35.1 25.1 —
CLIP4Clip [18] 400M 12 13.9 30.4 37.1 27.1 43.1 71.4 80.7 65.1
ECLIPSE [16] 400M 32 15.7 32.9 42.4 30.3 —
MKTVR† [19] 400M 42 16.6 37.5 50.0 34.7 —

1 — 36.4 64.9 75.4 58.9Singularity [12] 5M 4

—

— 44.1 73.5 82.2 66.6

Dense 16.0 34.9 47.2 32.7 43.6 72.6 82.2 66.1
SViTT 2M 8 Hybrid 17.7 39.5 49.8 35.7 47.5 76.3 84.2 69.3

Table A5. Text-to-video Retrieval with Fine-tuning. † denotes concurrent work.

Method PT Frames DiDeMo
R1 R5 R10 Mean

Frozen [2] 5M 4 21.1 46.0 56.2 41.1

SViTT
Dense 2M 8 21.9 45.6 56.6 41.4
Hybrid 22.9 47.7 58.1 42.9

Table A6. Zero-shot Retrieval with SViTT on Frozen Baseline.
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Figure A1. Node Sparsity for 4- and 8-frame Models. Model of
longer clip length is more robust to node sparsification.

tions outperformed the original implementation of [2], de-
spite being trained without image-text data (CC3M [23]).
SViTT with hybrid sparsity again outperforms the dense
version while using less computation and training memory.

B.3. Video Sparsity vs. Clip Length

To demonstrate the claim that video sparsity increases
with clip length, we evaluate dense models trained with clip
length 4 and 8 under different levels of sparsity. As shown
in Fig. A1, the 8-frame model is more robust to token prun-
ing with lower keep rates. On DiDeMo, it outperforms 4-
frame model by 4% at qv = 0.5, while the two models dif-
fer by under 2% under dense evaluation. This reveals that
longer clips contain greater level of redundancy, and should
be modeled with higher sparsity (as done in this work).

B.4. Chunking Strategy

In edge sparsification, the flattened video sequence z1:N
is chunked into subsequences of length G. While this strat-

Order MSR-VTT DiDeMo
R1 R5 R10 Mean R1 R5 R10 Mean

Standard 21.0 43.0 51.5 38.5 29.1 53.5 63.1 48.6
Morton 20.6 40.6 49.4 36.9 27.3 51.9 61.9 47.1
Hilbert 20.3 40.9 49.6 36.9 27.9 52.5 62.5 47.7

Table A7. Ablation on Token Ordering. We compare the stan-
dard SViTT trained with flattened video tokens and reordering
using space-filling curves.

SSv2-Label ActivityNet-QAModel Sp. N S ∆ N S ∆

Singularity [12] — 66.6 66.3 0.3 41.8 41.8 0.0
D 66.1 64.9 1.2 42.5 42.3 0.2

SViTT H 69.3 65.8 3.5 43.2 42.3 0.9

Table A8. Temporal Probing. Video-text transformers are evalu-
ated using Normal and Shuffled frame order.

egy is straightforward and common in language transform-
ers [3, 29], it breaks the spatiotemporal continuity of video
data. We investigate an alternative to naı̈ve chunking, by
reordering the input tokens using space-filling curves such
as Morton [21] and Hilbert [11] curves. This ensures that
neighboring tokens in the flattened sequence are close to
each other in the original multidimensional space, leading
to more localized chunks.

However, early experiments showed no benefit of space-
filling token order over naı̈ve flattening, as shown in
Tab. A7. This is possibly because video encoders are initial-
ized from image transformers, and block attention with re-
ordering prevents video tokens from attending to other spa-
tial locations from the same frame. We leave the study of
an optimal chunking strategy for 3D inputs for future work.

B.5. Temporal Probing

To measure the sensitivity of the learned video-text
model to temporal cues, we perform an evaluation with
shuffled input frames. Tab. A8 shows a performance drop



of SViTT models on retrieval (SSv2) and video QA (Ac-
tivityNet) tasks, indicating that the video-text models have
learned to reason about the temporal dynamics of video
clips. The difference ∆ between normal and shuffled in-
puts is more prominent on hybrid sparse models, possibly
because they attend more to the foreground which contains
more temporal variations. Notably, this behavior does not
hold for the Singularity model, whose performance is un-
affected by frame order. This suggests that late temporal
aggregation after spatial global pooing is insufficient to cap-
ture spatiotemporal relations across video frames.

B.6. Qualitative Results

Figs. A2 and A3 visualizes the node sparsification pat-
terns generated by visual encoder fv and multimodal en-
coder fm. While visual sparsification alone can signifi-
cantly reduce the number of tokens during forward pass, we
find that the cross-modal attention map aligns better with re-
gions of interest in each clip, enabling greater node sparsity
in video-text modeling.

C. Limitations & Future Work

While SViTT shows great potential towards building
long-term video-text models, we recognize that learning
temporal relationships from videos would not be possi-
ble without high-quality pre-training data. We find that
WebVid-2M exists a strong tendency towards spatial ap-
pearances: Many videos consist of only simple motions
(running, talking etc.), and captions are often highly cor-
related to the static background. Given this, we suspect
that further increasing the clip length beyond 16 frames per
video is unlikely to make a significant difference in mod-
eling performance. Building on top of the sparse video-
text architecture in this work, future studies can focus on
pre-training on video-language datasets and tasks that re-
quire aggregating information over a longer period of time
span, e.g. narrated egocentric videos over long episodes [9],
where SViTT may provide larger gains over frame-based
approaches and dense spatiotemporal transformers.
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A baby playing with a cat's tail.

A girl using her smartphone.

Person is recording the brown horse which is having fun.
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Figure A2. Qualitative Results. We visualize node sparsity patterns generated by visual (qv = 0.6) and cross-modal encoder (qm = 0.1).
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A person is standing, grasping their phone, then begins to tidy up the sofa, and begins to sneeze.

A person is undressing and throwing their clothes on the sofa, then sitting on the edge of the bed. The person removes their socks.

A person drinking a glass of water walks down the stairs at the bottom they sit down to take off their shoes and sneeze while untying the laces.

Vi
su

al
C

ro
ss

-m
od

al
Vi

su
al

C
ro

ss
-m

od
al

Vi
su

al
C

ro
ss

-m
od

al

Figure A3. Qualitative Results (continued).
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