
Supplementary Material for Dense Network Expansion for Class Incremental
Learning

Zhiyuan Hu1 Yunsheng Li2 Jiancheng Lyu3 Dashan Gao3 Nuno Vasconcelos1
1UC San Diego 2Microsoft Cloud + AI 3Qualcomm AI Research

{z8hu, nvasconcelos}@ucsd.edu, yunshengli@microsoft.com, {jianlyu, dgao}@qti.qualcomm.com

In this supplementary material, we discuss more de-
tails about the architecture of the proposed Dense Network
Expansion (DNE) method, the experiment setup and add
several experiments to further validate the effectiveness of
DNE.

A. Model Design
A.1. MHSA block

𝑟!"## , 𝑟!"#$, … 𝑟!"#%"#

Old input embeddings

𝑟!"#%

New input embeddings

Layer Norm Layer Norm

Multi-
Head Self
Attention

Multi-
Head Self
Attention

Layer Norm Layer Norm

MLP with
TA MLP

Add Add

Add Add

𝑟!#, 𝑟!$, … 𝑟!%"# 𝑟!%

Old output embeddings New output embeddings

𝑠!#, 𝑠!$, … 𝑠!%"# 𝑠!%
Intermediate
embeddings

SASA

0
1
2
3
4

SA

0
1
2
3
4

SA

0
1
2
3
4

SA

0
1
2
3
4

+

+

𝑠!𝑟!

𝑠", 𝑠#, … , 𝑠!$"𝑟", 𝑟#, … , 𝑟!$"

LN

LN

MHSA

Figure A. In MHSA, heads belong to old tasks are processed with fixed
old self-attention blocks. Only the newly added self-attention blocks are
trained.

In DNE, cross-task attention is only used in MLP layers
of a transformer block. In MHSA a “sparse” connection is
used, as is illustrated in Figure A. Specifically, we split the
input r into different heads based on Equation 7 and similar
to Equation 15 of main paper, which are then processed as:

u = [u1,1, u1,2, . . . , u1,H1 , u2,1, . . . , ut,Ht] ∈ RP×D×H

(1)

ui,j = SAi,j(LN(ri,j)) ∈ RP×D (2)

where SA is the self-attention block as in [1], ui,j is the
intermediate output for head j in task i. Note that, only

the self-attention blocks of the current task (i.e. SAi,j with
i = t) will be trained. After this, all the heads from the
same task are fused for the output s:

s = s1 ⊕ s2 ⊕ · · · ⊕ st ∈ RP×(D×H) (3)

si = ri + FCi(ui,1 ⊕ ui,2 ⊕ · · · ⊕ ui,Hi) ∈ RP×(D×Hi)

(4)

where FC is a linear layer and si the output embedding for
i-th task.

A.2. Task tokens

Transformer-based CIL methods [3, 7–9], typically in-
clude an extra block fL+1, where global learned task tokens
e = [e1, e2, . . . , et] are used to produce task-specified fea-
tures and are then taken as the inputs of the classification
layer, according to

e′ = fL+1(rL, e; θL+1) (5)
g(x; θ) = h(e′;ϕ), (6)

to provide the classifier with increased task sensitivity. For
network expansion based methods, e1, e2, . . . , et−1 will be
fixed and only et is trained at current task t.

A.3. Training objectives

Given an input image x with label y. Let g(x; θ) be the
current model and g′(x; θ′) the fixed model of the last task,
Y =

∑t
i=1 |Yi|, and Y ′ =

∑t−1
i=1 |Yi| the total number of

classes in current task and last task.
The classification loss is given by:

Lce = CE(g(x; θ), y) (7)

where CE is the cross-entropy function.
In parallel with the classifier h(x; θ), a |Yt+1| way aux-

iliary classifier ĥ(x; θ) is added over the final feature (in
DNE the e′) to generate the auxiliary logits:

ĝ(x; θ) = ĥ(e′; ϕ̂) ∈ R|Yt|+1 (8)

1

where ϕ̂ is the parameters of the auxiliary classifier.
To supervise this logit, an auxiliary label for input x is

given by:

ŷ =

{
1 if y ≤ Y ′

y + 1 else (9)

The auxiliary labels consider all previous classes as an
“outlier” class so that the newly added blocks can learn the
knowledge that is complementary to previous tasks. This is
implemented by the task expert loss:

Lte = CE(ĝ(x; θ), ŷ) (10)

The distillation loss is defined as:

Ldis = KL(SoftMax(g(x; θ)[: Y ′]),SoftMax(g′(x; θ)))
(11)

where KL is the KL divergence, SoftMax is the SoftMax
function and g(x; θ)[: Y ′] is the first Y ′ outputs of g(x; θ).

The final loss is the weighted average of the previous
three losses:

L = λ1Lce + λ2Lte + λ3Ldis (12)

where λ1, λ2 and λ3 are the weights.

B. Implementation Details

B.1. Class balanced tuning

Similar to [4], we first train the entire network g(x; θ)
with the dataset Dt from current task and the memory
bufferM. However, since the size of Dt is typically much
larger than M, g(x; θ) trained on Dt ∪ M is heavily bi-
ased towards the classes in current task t. To reduce this
bias, we subsample the data in Dt to build a subset D′

t,
such that all the categories have the same number of input
data, i.e. |{y|(x, y) ∈ D′

t, y = i}| = |{y|(x, y) ∈ M, y =
j}|,∀i, j. After that, the backbone is fixed, only the last
layer fL+1(rL, e; θL+1) and the classifier h(e′;ϕ) is tuned
with D′

t ∪M.

B.2. Dimension of variants of comparison methods

In Figure 6(a)(b) of the main paper, we compare the
accuracy-scale trade-off between DNE and other compar-
ison methods, specifically, we change the feature dimen-
sion or backbone network of comparison methods to change
their model sizes. The detailed setups are summarized in
Table A, note that, the methods use the identical setups on
ImageNet100 and CIFAR100 so we only list the setup of
backbone, Ns, feature dimension (denoted as Dim in the
Table) and the FLOPs F in this setup.

Method Backbone Dim F

iCaRL [5] ResNet18 768 2.50G
ResNet18 864 3.16G
ResNet18 1024 4.44G

PODNet [2] ResNet18 768 2.50G
ResNet18 864 3.16G
ResNet18 1024 4.44G

Dytox [3] Transformer 512 2.46G
Transformer 576 3.12G
Transformer 672 4.24G

DER [10] ResNet18 320 2.62G
ResNet18 352 3.16G
ResNet18 400 4.08G

FOSTER [6] ResNet18 768 2.50G
ResNet18 864 3.16G
ResNet18 1024 4.44G
ResNet34 512 2.32G
ResNet50 512 2.62G

ResNet101 512 5.04G
ResNet152 512 7.48G

Table A. Detailed setups of the comparison methods

B.3. Hyperparameters

We train DNE for 500 epochs and do class balanced tun-
ing for 20 epochs. The learning rate is 2.5 × 10−4 and
weight decay is 1 × 10−6, we use SGD optimizer to train
our model. The batch is 256 and the model is trained on
4 GPUs in parallel. The memory buffer is set as 2000 and
we use the herd selection algorithm [5] to update the mem-
ory buffer. In the 6-layer transformer, we set the patch size
as 4 on CIFAR100 and on ImageNet100 the patch size is
16. The dimension of each head is 32. We empirically set
λ1 = λ3 = 1 and λ2 = 0.1.

C. Experiments

Spatial-Task Attention. We provide a detailed analysis
on Spatial-Task Attention(STA) in this experiments. As is
illustrated in Figure 2 and 3 of main paper. Attentions in
STA are divided into 4 different groups: Same Patch Same
Head (SPSH), Different Patch Same Head (DPSH), Same
Patch Different Head (SPDH) and Different Patch Different
Head (DPDH). Standard attention module learns the Inde-
pendent Attention (IA) which includes SPSH and DPSH.
This leverages the spatial attention across patches. To im-
plement the joint Spatial-Task Attention, SPDH or DPDH
need to be included. This leads to three variants of STA:
(IA)+SPDH, (IA)+DPDH and (IA)+SPDH+DPDH. To eva-
lute the effects of these 4 groups of attention in IA and STA,
we consider several evaluation metrics. Specifically, the
Portion of each group of attention, which is the sum of each

12.67%

87.33%

IA

SPSH SPDH DPSH DPDH

15.7%

44.66%

39.64%

IA + SPDH

SPSH SPDH DPSH DPDH

10%

14.72%

75.27%

IA + DPDH

SPSH SPDH DPSH DPDH

8.99%

16.81%

12.9%61.31%

IA + SPDH + DPDH

SPSH SPDH DPSH DPDH

0.1267 0.157 0.1 0.0899

0.0298

0.0112
0.0139

0.0053
0.00234 0.002

0.0008 0.0006
0

0.01

0.02

0.03

0.04

IA +SPDH +DPDH +SPDH+DPDH

Average value for 4 groups (value chunked by 0.04)

SPSH SPDH DPSH DPDH

58.22

52.7

36.51

41.07

35

40

45

50

55

60

Final accuracy

IA +SPDH +DPDH +SPDH+DPDH

Figure B. Left: Portion of 4 groups attention within the entire attention matrix for IA model and three variants of STA model. Top-right: Average value of 4
groups attention for IA and three variants of STA. Bottom-right: Final accuracy of IA and three variants of STA.

type of attention divided by the sum of the entire attention
matrix. The Average Value of each group of attention and
the Final Accuracy of IA and three variants of STA. The
experiments are conducted on CIFAR100 with Ns = 10.

Figure B summarizes these results. In the independent
attention, DPSH dominates the attention matrix, so that the
spatial attention across different patches is properly learned.
However, as SPDH is introduced (IA+SPDH model), the
portion of DPSH decreases from 87.33% to 39.64%. This is
reasonable, as SPDH leverages attention of exactly the same
patch in different heads, which have very similar represen-
tations. As a result, the average value of SPDH (0.0298)
is significantly larger than DPSH (0.0053). The attention
module is attracted by the cross-head, or cross-task atten-
tion so the spatial connections are not well learned. The
accuracy also decreases from 58.22% to 52.70%. When the
DPDH is added (IA+DPDH model and IA+SPDH+DPDH
model), the attention matrix is completed dominated by
DPDH (75.27% and 61.31%). Representations of differ-
ent patches and different heads are weakly related, this is
ture, as the average value of DPDH is merely 0.0008 or
0.0006, significantly smaller than SPDH and DPSH. How-
ever, DPDH has much more entries within the attention ma-
trix. Suppose P patches of H heads are considered in STA.
SPSH will include HP entry, SPDH includes HP (H − 1)
entries, DPSH includes HP (P − 1) entries and the rest
HP (HP − H − P + 1) entries all belong to DPDH! In
a common setup where H = 16 and P = 64, 92% the

entries belong to DPDH. Both SPDH and DPSH are di-
luted by small-valued but innumerous-numbered DPDH en-
tries. As a result, the final accuracy dropped significantly.
Compare to the independent attention model which reaches
58.22% accuracy, IA+DPDH reaches only 386.51% and
IA+SPDH+DPDH reaches 41.07%. Based on these obser-
vations, we disentangle the spatial and task attention in our
proposed DNE model.

CTA vs depth. We ablated the impact of adding CTA to
each layer of the DNE model. Starting from the NE model
(no CTA connections), we gradually add CTA to each layer,
from shallow to deep. Figure C left shows that CTA is ben-
eficial at all layers, with larger gains for shallower layers.
While adding CTA to layer 1-3 increases LA by about 2%,
for deep layers the gain is about 1%. This is not surprising,
since the low level features of the shallow layers are more
reusable by all tasks. Higher layers have more semantic
features, specialized to the task classes. These results show
that CTA enables old experts to share knowledge with new
experts, and this is useful at all semantic levels.

Memory buffer size. We measure the performances of
DNE under different memory settings. The memory buffer
size is reduced from 2000 to 200. It can be shown from the
right of Figure C that DNE consistently outperforms other
baseline methods in various memory settings.

TAB matrices. The TAB of Figure 5 in main paper
has three learned matrices, Wq,Wk, and Wv . DNE shares
Wq,Wk, across tasks and has flexible Wv per task. This re-

NE

Layer 1

Layer 2

Layer 3
Layer 4

Layer 5

DNE

56

58

60

62

64

66

68

70

1.7 2.2 2.7

LA
ST

AC
CU

RA
CY

FLOPS / G
30

35

40

45

50

55

60

65

70

2000 1000 500 200

Fi
na
lA

cc
ur
ac
y

FOSTER

DER

DNE

Figure C. Ablation Study, experiments conducted on CIFAR100 with Ns = 10. Left: Gradually add CTA across layers. Right: Effect of different memory
buffer size.

Model Wq Wk Wv LA ↑ AA ↑
- - s 63.80 70.67

MLP - - f 67.08 73.22

s s s 64.44 71.17
f f s 64.92 71.38
f f f 67.23 73.13

DNE s s f 68.04 73.68

Table B. Performance on CIFAR100, Ns = 10, k = 1, for different
configurations of TAB matrices. ’s’: shared across tasks, ’f’: flexible.

Cross-task attention in:
LA ↑ AA ↑

lq, lk, lv of MHSA MLP

% % 58.22 67.63
! % 66.29 72.42
% ! 68.04 73.68
! ! 67.93 73.46

Table C. Cross-task attention in MHSA and MLP

duces to an MLP across tasks when Wq,Wk, are eliminated
and Aij

p = 1,∀i, j in Equation (23) of main paper. We ab-
lated the impact of sharing the different matrices. Table B
shows that the DNE configuration has the best trade-off be-
tween accuracy and model size.

Cross-task attention in MHSA. MHSA and MLP are
the main components of the transformer block. MHSA
mainly learns spatial attentions between different patches
while MLP fuse the features of different channels. In DNE,
cross-task attention(CTA) is only equipped in MLP. How-
ever, there are still linear layers in the MHSA block, specif-
ically the three linear layers lq, lk, lv to generate query, key

Cross-task attention in:
LA ↑ AA ↑FC1 of MLP FC2 of MLP

% % 58.22 67.63
! % 66.82 73.07
% ! 66.74 72.77
! ! 68.04 73.68

Table D. Cross-task attention in different linear layers MLP, FC1 is the first
linear layer of MLP and FC2 is the secound linear layer of MLP

and value vectors in the self-attention blocks. By applying
CTA to these linear layers, the MHSA could be able to first
learn a feature that encodes information across tasks and
then learn the spatial relationships. In Table C, we evalu-
ate the effects of CTA in the linear layers of MHSA and
MLP. The experiments are conducted on CIFAR100 with
Ns = 10.

Using CTA in MHSA and MLP can both significantly
improve the performances. CTA in MHSA(MLP) increases
the last accuracy by 8.07%(9.82%) and the average incre-
mental accuracy by 4.79%(6.05%), compared to the model
without CTA. But using CTA in both MHSA and MLP does
not further boost the performances. Linear layers in MHSA
and the MLP are doing similar things while MHSA is more
focusing on spatial connections. Thus it is more natural to
implement the CTA in MLP block only.

Cross-task attention in different layers of MLP. MLP
has two linear layers in which CTA can be added. In Ta-
ble D we evaluate the effects of CTA in these two lin-
ear layers. Experiments are conducted on CIFAR100 with
Ns = 10. The results show that using CTA in either the first
or the second linear layer can improve the last accuracy by

about 8.5% and the average incremental accuracy by about
5.5%. But by using CTA in both linear layers, the perfor-
mances can be further improved. In DNE we use CTA in
both linear layers to reach better performances.

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

[2] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distilla-
tion for small-tasks incremental learning. In European Con-
ference on Computer Vision, pages 86–102. Springer, 2020.
2

[3] Arthur Douillard, Alexandre Ramé, Guillaume Couairon,
and Matthieu Cord. Dytox: Transformers for continual
learning with dynamic token expansion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9285–9295, 2022. 1, 2

[4] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,
Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decou-
pling representation and classifier for long-tailed recogni-
tion. arXiv preprint arXiv:1910.09217, 2019. 2

[5] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017. 2

[6] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Foster: Feature boosting and compression for class-
incremental learning. arXiv preprint arXiv:2204.04662,
2022. 2

[7] Zhen Wang, Liu Liu, Yiqun Duan, Yajing Kong, and
Dacheng Tao. Continual learning with lifelong vision trans-
former. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 171–181,
2022. 1

[8] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun,
Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, et al. Dualprompt: Complemen-
tary prompting for rehearsal-free continual learning. arXiv
preprint arXiv:2204.04799, 2022. 1

[9] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer
Dy, and Tomas Pfister. Learning to prompt for continual
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 139–149,
2022. 1

[10] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3014–3023,
2021. 2

	. Model Design
	. MHSA block
	. Task tokens
	. Training objectives

	. Implementation Details
	. Class balanced tuning
	. Dimension of variants of comparison methods
	. Hyperparameters

	. Experiments

