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Abstract

The problem of multi-domain learning of deep networks

is considered. An adaptive layer is induced per target

domain and a novel procedure, denoted covariance nor-

malization (CovNorm), proposed to reduce its parameters.

CovNorm is a data driven method of fairly simple im-

plementation, requiring two principal component analyzes

(PCA) and fine-tuning of a mini-adaptation layer. Neverthe-

less, it is shown, both theoretically and experimentally, to

have several advantages over previous approaches, such as

batch normalization or geometric matrix approximations.

Furthermore, CovNorm can be deployed both when target

datasets are available sequentially or simultaneously. Ex-

periments show that, in both cases, it has performance com-

parable to a fully fine-tuned network, using as few as 0.13%
of the corresponding parameters per target domain.

1. Introduction

Convolutional nerual networks (CNNs) have enabled

transformational advances in classification, object detection

and segmentation, among other tasks. However they have

non-trivial complexity. State of the art models contain mil-

lions of parameters and require implementation in expen-

sive GPUs. This creates problems for applications with

computational constraints, such as mobile devices or con-

sumer electronics. Figure 1 illustrates the problem in the

context of a smart home equipped with an ecology of de-

vices such as a camera that monitors package delivery and

theft, a fridge that keeps track of its content, a treadmill that

adjusts fitness routines to the facial expression of the user,

or a baby monitor that keeps track of the state of a baby.

As devices are added to the ecology, the GPU server in the

house must switch between a larger number of classifica-

tion, detection, and segmentation tasks. Similar problems

will be faced by mobile devices, robots, smart cars, etc.

Under the current deep learning paradigm, this task

switching is difficult to perform. The predominant strategy

is to use a different CNN to solve each task. Since only a
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Figure 1: Multi-domain learning addresses the efficient solution of sev-

eral tasks, defined on different domains. Each task is solved by a different

network but all networks share a set of fixed layers F, which contain the

majority of network parameters. These are complemented by small task-

specific adaptation layers A.

few models can be cached in the GPU, and moving mod-

els in and out of cache adds too much overhead to enable

real-time task switching, there is a need for very efficient

parameter sharing across tasks. The individual networks

should share most of their parameters, which would always

reside on the GPU. A remaining small number of task spe-

cific parameters would be switched per task. This problem

is known as multi-domain learning (MDL) and has been

addressed with the architecture of Figure 1 [34, 38]. This

consists of set of fixed layers (denoted as ’F’) shared by all

tasks and a set of task specific adaptation layers (denoted
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Figure 2: Covariance normalization. Each adaptation layer A is approx-

imated by three transformations: W̃x, which implements a projection

onto the PCA space of the input x (principal component matrix Px and

eigenvalue matrix Ex), W̃y , which reconstructs the PCA space of the

output y (matrices Py and Ey), and a mini-adaptation layer Mxy .

as ’A’) fine-tunned to each task. If the A layers are much

smaller than the F layers, many models can be cached si-

multaneously. Ideally, the F layers should be pre-trained,

e.g. on ImageNet, and used by all tasks without additional

training, enabling the use of special purpose chips to im-

plement the majority of the computations. While A layers

would still require a processing unit, the small amount of

computation could enable the use of a CPU, making it cost-

effective to implement each network on the device itself.

In summary, MDL aims to maximize the performance

of the network ecology while minimizing the ratio of task

specific (A) to total parameters (both types F and A) per

network. [34, 38] have shown that the architecture of Fig-

ure 1 can match the performance of fully fine-tuning each

network in the ecology, even when A layers contain as few

as 10% of the total parameters. In this work, we show that

A layers can be substantially further shrunk, using a data-

driven low-rank approximation. As illustrated in Figure 2,

this is based on transformations that match the 2nd-order

statistics of the A layer inputs and outputs. Given prin-

cipal component analyses (PCAs) of both input and out-

put, the layer is approximated by a recoloring transfor-

mation: a projection into input PCA space, followed by

a reconstruction into the output PCA space. By control-

ling the intermediate PCA dimensions, the method enables

low-dimensional approximations of different input and out-

put dimensions. To correct the mismatch (between PCA

components) of two PCAs learned independently, a small

mini-adaptation layer is introduced between the two PCA

matrices, and fine-tunned on the target target.

Since the overall transformation generalizes batch nor-

malization, the method is denoted covariance normaliza-

tion (CovNorm). CovNorm is shown to outperform, with

both theoretical and experimental arguments, purely geo-

metric methods for matrix approximation, such as the sin-

gular value decomposition (SVD) [35], fine-tuning of the

original A layers [34, 38], or adaptation based on batch nor-

malization [2]. It is also quite simple, requiring two PCAs

and the finetuning of a very small mini-adaptation layer per

A layer and task. Experimental results show that it can out-

perform full network fine-tuning while reducing A layers

to as little as 0.53% of the total parameters. When all tasks

can be learned together, A layers can be further reduced

to 0.51% of the full model size. This is achieved by com-

bining the individual PCAs into a global PCA model, of

parameters shared by all tasks, and only fine-tunning mini-

adaptation layers in a task specific manner.

2. Related work

MDL is a transfer learning problem, namely the transfer

of a model trained on a source learning problem to an ecol-

ogy of target problems. This makes it related to different

types of transfer learning problems, which differ mostly in

terms of input, or domain, and range space, or task.

Task transfer: Task transfer addresses the use of a

model trained on a source task to the solution of a target

task. The two tasks can be defined on the same or different

domains. Task transfer is prevalent in deep learning, where

a CNN pre-trained on a large source dataset, such as Ima-

geNet, is usually fine-tunned [21] to a target task. While

extremely effective and popular, full network fine-tunning

changes most network parameters, frequently all. MDL ad-

dresses this problem by considering multiple target tasks

and extensive parameter sharing between them.

Domain Adaptation: In domain adaptation, the source

and target tasks are the same, and a model trained on a

source domain is transfered to a target domain. Domain

adaptation can be supervised, in which case labeled data is

available for the target domain, or unsupervised, where it

is not. Various strategies have been used to address these

problems. Some methods seek the network parameters that

minimize some function of the distance between feature dis-

tributions in the two domains [24, 4, 43]. Others introduce

an adversarial loss that maximizes the confusion between

the two domains [8, 45]. A few methods have also proposed

to do the transfer at the image level, e.g. using GANs [11] to

map source images into (labeled) target images, then used to

learn a target classifier [3, 41, 14]. All these methods exploit

the commonality of source and domain tasks to align source

and target domains. This is unlike MDL, where source and

target tasks are different. Nevertheless, some mechanisms

proposed for domain adaptation can be used for MDL. For

example, [5, 28] use a batch normalization layer to match

the statistics of source and target data, in terms of means

and standard deviation. This is similar to an early proposal

for MDL [2]. We show that these mechanisms underper-

form covariance normalization.

Multitask learning: Multi-task learning [6, 49] ad-

dresses the solution of multiple tasks by the same model. It

assumes that all tasks have the same visual domain. Popular
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Figure 3: a) original network, b) after fine-tuning, and c) with adaptation layer A. In all cases, Wi is a weight layer and φ(.) a non-linearity.

examples include classification and bounding box regres-

sion in object detection [9, 37], joint estimation of surface

normals and depth [7] or segmentation [29], joint represen-

tation in terms of attributes and facial landmarks [50, 33],

among others. Multitask learning is sometimes also used to

solve auxiliary tasks that strengthen performance of a task

of interest, e.g. by accounting for context [10], or represent-

ing objects in terms of classes and attributes [15, 29, 30, 25].

Recently, there have been attempts to learn models that

solve many problems jointly [18, 19, 48].

Most multitask learning approaches emphasize the learn-

ing of the interrelationships between tasks. This is fre-

quently accomplished by using a single network, combin-

ing domain agnostic lower-level network layers with task

specific network heads and loss functions [50, 7, 10, 15, 37,

19], or some more sophisticated forms of network branch-

ing [25]. The branching architecture is incompatible with

MDL, where each task has its own input, different from

those of all other tasks. Even when multi-task learning

is addressed with multiple tower networks, the emphasis

tends to be on inter-tower connections, e.g. through cross-

stitching [29, 17]. In MDL, such connections are not fea-

sible, because different networks can join the ecology of

Figure 1 asynchronously, as devices are turned on and off.

Lifelong learning: Lifelong learning aims to learn mul-

tiple tasks sequentially with a shared model. This can be

done by adapting the parameters of a network or adapting

the network architecture. Since training data is discarded

upon its use, constraints are needed to force the model to

remember what was previously learned. Methods that only

change parameters either use the model output on previous

tasks [23], previous parameters values [22], or previous net-

work activations [44] to regularize the learning of the target

task. They are very effective at parameter sharing, since

a single model solves all tasks. However, this model is

not optimal for any specific task, and can perform poorly

on all tasks, depending on the mismatch between source

and target domains [36]. We show that they can signifi-

cantly underperform MDL with CovNorm. Methods that

adapt the network architecture usually add a tower per new

task [40, 1]. These methods have much larger complex-

ity than MDL, since several towers can be needed to solve

a single task [40], and there is no sharing of fixed layers

across tasks.

Multi-domain learning: This work builds on previous

attempts at MDL, which have investigated different archi-

tectures for the adaptation layers of Figure 1. [2] used a BN

layer [16] of parameters tunned per task. While perform-

ing well on simple datasets, this does not have enough de-

grees of freedom to support transfer of large CNNs across

different domains. More powerful architectures were pro-

posed by [38], who used a 1 × 1 convolutional layer and

[34], who proposed a ResNet-style residual layer, known as

a residual adaptation (RA) module. These methods were

shown to perform surprisingly well in terms of recogni-

tion accuracy, equaling or surpassing the performance of

full network fine tunning, but can still require a substan-

tial number of adaptation parameters, typically 10% of the

network size. [35] addressed this problem by combining

adapters of multiple tasks into a large matrix, which is ap-

proximated with an SVD. This is then fine-tuned on each

target dataset. Compressing adaptation layers in this way

was shown to reduce adaptive parameter counts to approxi-

mately half of [34]. However, all tasks have to be optimized

simultaneously. We show that CovNorm enables a further

ten-fold reduction in adaptation layer parameters, without

this limitation, although some additional gains are possible

with joint optimization.

3. MDL by covariance normalization

In this section, we introduce the CovNorm procedure for

MDL with deep networks.

3.1. Multi­domain learning

Figure 3 a) motivates the use of A layers in MDL. The

figure depicts two fixed weight layers, F1 and F2, and a

non-linear layer φ(.) in between. Since the fixed layers are

pre-trained on a source dataset S , typically ImageNet, all

weights are optimized for the source statistics. For standard

losses, such as cross entropy, this is a maximum likelihood

(ML) procedure that matches F1 and F2 to the statistics

of activations x,y and u in S . However, when the CNN

is used on a different target domain, the statistics of these

variables change and F1,F2 are no longer an ML solution.

Hence, the network is sub-optimal and must be finetunned

on a target dataset T . This is denoted full network finetun-

ing and converts the network into an ML solution for T ,

with the outcome of Figure 3 b). In the target domain, the

intermediate random variables become x′, y′, and u′ and

the weights are changed accordingly, into F′
1 and F′

2.

While very effective, this procedure has two drawbacks,

which follow from updating all weights. First, it can be

computationally expensive, since modern CNNs have large

weight matrices. Second, because the weights F′
i are not

optimal for S , i.e. the CNN forgets the source task, there is a

need to store and implement two CNNs to solve both tasks.

This is expensive in terms of storage and computation and
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increases the complexity of managing the network ecology.

A device that solves both tasks must store two CNNs and

load them in and out of cache when it switches between

the tasks. These problems are addressed by the MDL ar-

chitecture of Figure 1, which is replicated in greater detail

on Figure 3 c). It introduces an adaptation layer A and

fine-tunes this layer only, leaving F1 and F2 unchanged. In

this case, the statistics of the input are still those of x′, but

the distributions along the network are now those of z′,y′′,
and u′′. Since F1 is fixed, nothing can be done about z′.

However, the fine-tuning of A encourages the statistics of

y′′ to match those of y′, i.e. y′′ = y′ and thus u′′ = u′.

Even if A cannot match statistics exactly, the mismatch is

reduced by repeating the procedure in subsequent layers,

e.g. introducing a second A layer after F2, and optimizing

adaptation matrices as a whole.

3.2. Adaptation layer size

Obviously, MDL has limited interest if A has size simi-

lar to F1. In this case, each domain has as many adaptation

parameters as the original network, all networks have twice

the size, task switching is complex, and training complexity

is equivalent to full fine tunning of the original network. On

the other hand, if A is much smaller than F1, MDL is com-

putationally light and task-switching much more efficient.

In summary, the goal is to introduce an adaptation layer A

as small as possible, but still powerful enough to match the

statistics of y′ and y′′. A simple solution is to make A a

batch normalization layer [16]. This was proposed in [2]

but, as discussed below, is not effective. To overcome this

problem, [38] proposed a linear transformation A and [34]

adopted the residual structure of [13], i.e. an adaptation

layer T = (I+A). To maximize parameter savings, A was

implemented with a 1×1 convolutional layer in both cases.

This can, however, still require a non-trivial number of

parameters, especially in upper network layers. Let F1 con-

volve a bank of d filters of size k×k×l with l feature maps.

Then, F1 has size dk2l, y is d dimensional, and A a d × d
matrix. Since in upper network layers k is usually small and

d > l, A can be only marginally smaller than F1. [35] ex-

ploited redundancies across tasks to address this problem,

creating a matrix with the A layer parameters of multiple

tasks and computing a low-rank approximation of this ma-

trix with an SVD. The compression achieved with this ap-

proximation is limited, because the approximation is purely

geometric, not taking into account the statistics of z′ and

y′. In this work, we propose a more efficient solution, mo-

tivated by the interpretation of A as converting the statistics

of z′ into those of y′. It is assumed that the fine-tuning of A

produces an output variable y′′ whose statistics match those

of y′. This could leverage adaptation layers in other layers

of the network, but that is not important for the discussion

that follows. The only assumption is that y′′ = y′. The

Figure 4: Top: covnorm approximates adaptation layer A by a sequence

of whitening W̃x, mini-adaptation Mx,y , and coloring C̃y operations.

Bottom: after covnorm, the mini adaptation layer can be absorbed into

W̃x (shown in the figure) or C̃y .

goal is to replace A by a simpler matrix that maps z′ into

y′. For simplicity, we drop the primes and notation of Fig-

ure 3 in what follows, considering the problem of matching

statistics between input x and output y of a matrix A.

3.3. Geometric approximations

One possibility is to use a purely geometric solution [35].

Geometrically, the closest low rank approximation of a ma-

trix A is given by the SVD, A = USVT . More pre-

cisely, the minimum Frobenius norm approximation Ã =
argmin{B|rank(B)=r} ||A−B||2F , where r < rank(A), is

Ã = US̃VT where S̃ contains the r largest singular values

of A. This can be written as Ã = CW, where C = U
√

S̃

and W =
√

S̃VT . If A ∈ R
d×d, these matrices have a

total of 2rd parameters. An even simpler solution is to de-

fine C ∈ R
d×r and W ∈ R

r×d, replace A by their product

in Figure 3 c), and fine-tune the two matrices instead of

A. We denote this as the fine-tunned approximation (FTA).

These approaches are limited by their purely geometric na-

ture. Note that d is determined by the source model (output

dimension of F1) and fixed. On the other hand, the dimen-

sion r should depend on the target dataset T . Intuitively,

if T is much smaller than S , or if the target task is much

simpler, it should be possible to use a smaller r than oth-

erwise. There is also no reason to believe that a single r,

or even a single ratio r/d, is suitable for all network lay-

ers. While r could be found by cross-validation, this be-

comes expensive when there are multiple adaptation layers

throughout the CNN. We next introduce an alternative, data

driven, procedure that bypasses these difficulties.

3.4. Covariance matching

Assume that, as illustrated in Figure 2, x and y are Gaus-

sian random variables of means µx, µy and covariances

Σx,Σy , respectively, related by y = Ax. Let the covari-

ances have eigendecomposition

Σx = PxExP
T
x Σy = PyEyP

T
y (1)

where Px,Py contain eigenvectors as columns and Ex,Ey

are diagonal eigenvalue matrices. We refer to the triplet

5427



Px = (Px,Ex, µx) as the PCA of x. Then, it is well known

that the statistics of x and y are related by

µy = Aµx Σy = AΣxA
T (2)

and, combining (1) and (2), PyEyP
T
y = APxExP

T
xA

T .

This holds when Py

√
Ey = APx

√
Ex or, equivalently,

A = Py

√

Ey

√

E−1
x PT

x . (3)

= CyWx (4)

where Wx =
√

E−1
x PT

x is the “whitening matrix” of x and

Cy = Py

√

Eythe “coloring matrix” of y. It follows that

(2) holds if y = Ax is implemented with a sequence of

two operations. First, x is mapped into a variable w of zero

mean and identity covariance, by defining

w = Wx(x− µx). (5)

Second, w is mapped into y with

y = Cyw + µy. (6)

In summary, for Gaussian x, the effect of A is simply the

combination of a whitening of x followed by a colorization

with the statistics of y.

3.5. Covariance normalization

The interpretation of the adaptation layer as a recoloring

operation (whitening + coloring) sheds light on the number

of parameters effectively needed for the adaptation, since

the PCAs Px,Py capture the effective dimensions of x and

y. Let kx (ky) be the number of eigenvalues significantly

larger than zero in Ex (Ey). Then, the whitening and color-

ing matrices can be approximated by

W̃x =

√

Ẽ−1
x P̃T

x C̃y = P̃y

√

Ẽy (7)

where Ẽx ∈ R
kx×kx (Ẽy ∈ R

ky×ky ) contains the non-zero

eigenvalues of Σx (Σy), and P̃x ∈ R
d×kx (P̃y ∈ R

d×ky )

the corresponding eigenvectors. Hence, A is well approxi-

mated by a pair of matrices (W̃x, C̃y) totaling d(kx + ky)
parameters.

On the other hand, the PCAs are only defined up to

a permutation, which assigns an ordering to eigenval-

ues/eigenvectors. When the input and output PCAs are

computed independently, the principal components may not

be aligned. This can be fixed by introducing a permutation

matrix between Cy and Wx in (4). The assumption that all

distributions are Gaussian also only holds approximately in

real networks. To account for all this, we augment the recol-

oring operation with a mini-adaptation layer Mx,y of size

kx × ky . This leads to the covariance normalization (Cov-

Norm) transform

ỹ = C̃yMx,yW̃x(x− µx) + µy, (8)

Algorithm 1: Covariance Normalization

Data: source S and target T
1 Insert an adaptation layer A on a CNN trained on S

and fine-tune A on T .

2 Store the layer input and output PCAs Px, Py ,

select the kx, ky non-zero eigenvalues and

corresponding eigenvectors from each PCA, and

compute C̃y,W̃x with (7).

3 add mini-adaptation layer Mx,y and replace A by

(8). Note that, as usual, the constant

C̃yMx,yW̃xµx + µy can be implemented with a

vector of biases.

4 fine-tune Mx,y with W̃x and C̃y on T and absorb

Mx,y into the larger of W̃x and C̃y .

where Mx,y is learned by fine-tuning on the target dataset

T . Beyond improving recognition performance, this has

the advantage of further parameters savings. The direct

implementation of (8) increases the parameter count to

d(kx + ky) + kxky . However, after fine-tuning, Mx,y can

be absorbed into one of the two other matrices , as shown in

Figure 4. When kx > ky , Mx,yW̃x has dimension ky × d
and replacing the two matrices by their product reduces the

total parameter count to 2dky . In this case, we say that

Mx,y is absorbed into W̃x. Conversely, if kx < ky , Mx,y

can be absorbed into C̃y . Hence, the total parameter count

is 2dmin(kx, ky). CovNorm is summarized in Algorithm 1.

3.6. The importance of covariance normalization

The benefits of covariance matching can be seen by com-

parison to previously proposed MDL methods. Assume,

first, that x and y consist of independent features. In this

case, Px,Py are identity matrices and (5)-(6) reduce to

yi =
√
ey,i

xi − µx,i√
ex,i

+ µy,i, (9)

which is the batch normalization equation. Hence, Cov-

Norm is a generalized form of the latter. There are, how-

ever, important differences. First, there is no batch. The

normalizing distribution x is now the distribution of the fea-

ture responses of layer F1 on the target dataset T . Second,

the goal is not to facilitate the learning of F2, but produce

a feature vector y with statistics matched to F2. This turns

out to make a significant difference. Since, in regular batch

normalization, F2 is allowed to change, it can absorb any

initial mismatch with the independence assumption. This is

not the case for MDL, where F2 is fixed. Hence, (9) usually

fails, significantly underperforming (5)-(6).

Next, consider the geometric solution. Since CovNorm

reduces to the product of two tall matrices, e.g. K =
C̃yMx,y and L = W̃x of size d × kx, it should be pos-

sible to replace it with the fine-tuned approximation based

on two matrices of this size. Here, there are two difficulties.
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First, kx is not known in the absence of the PCA decompo-

sitions. Second, in our experience, even when kx is set to

the value used by PCA, the fine-tuned approximation does

not work. As shown in the experimental section, when the

matrices are initialized with Gaussian weights, performance

can decrease significantly. This is an interesting observa-

tion because A is itself initialized with Gaussian weights.

It appears that a good initialization is more critical for the

low-rank matrices.

Finally, CovNorm can be compared to the SVD, A =
USVT . From (3), this holds whenever V = Px, S =
√

Ey

√

E−1
x and U = Py . The problem is that the singu-

lar value matrix S conflates the variances of the input and

output PCAs. The fact that si = ey,i/ex,i has two impor-

tant consequences. First, it is impossible to recover the di-

mensions kx and ky by inspection of the singular values.

Second, the low-rank criteria of selecting the largest sin-

gular values is not equivalent to CovNorm. For example,

the principal components of x with largest eigenvalues ex,i
have the smallest singular values si. Hence, it is impos-

sible to tell if singular vectors vi of small singular values

are the most important (PCA components of large variance

for x) or the least important (noise). Conversely, the largest

singular values can simply signal the least important input

dimensions. CovNorm eliminates this problem by explicitly

selecting the important input and output dimensions.

3.7. Joint training

[35] considered a variant of MDL where the different

tasks of Figure 1 are all optimized simultaneously. This

is the same as assuming that a joint dataset T = ∪iTi is

available. For CovNorm, the only difference with respect to

the single dataset setting is that the PCAs Px,Py are now

those of the joint data T . These can be derived from the

PCAs Px,i,Py,i of the individual target datasets Ti with

µT =
1

N

∑

i

Niµi

ΣT =
∑

i

Ni

N
(PiEiPi

T + µiµi
T ))− µT µ

T
T (10)

where Ni is the cardinality of Ti. Hence, CovNorm can be

implemented by finetuning A to each Ti, storing the PCAs

Px,i,Py,i, using (10) to reconstruct the covariance of T ,

and computing the global PCA. When tasks are available

sequentially, this can be done recursively, combining the

PCA of all previous data with the PCA of the new data.

In summary, CovNorm can be extended to any number of

tasks, with constant storage requirements (a single PCA),

and no loss of optimality. This makes it possible to define

two CovNorm modes.

• independent: A layers of network i are adapted to

target dataset Ti. A PCA is computed for Ti and

the mini-adaptation fine-tuned to Ti. This requires

2dmin(kx, ky) task specific parameters (per layer) per

dataset.

• joint: a global PCA is learned from T and C̃y,W̃x

shared across tasks. Only a mini-adaptation layer is

fine-tuned per Ti. This requires min(kx, ky) task-

specific parameters (per layer) per dataset. All Ti must

be available simultaneously.

The independent model is needed if, for example, the de-

vices of Figure 1 are produced by different manufacturers.

4. Experiments

In this section, we present results for both the indepen-

dent and joint CovNorm modes.

Dataset: [34] proposed the decathlon dataset for eval-

uation of MDL. However, this is a collection of relatively

small datasets. While sufficient to train small networks, we

found it hard to use with larger CNNs. Instead, we used a

collection of seven popular vision datasets. SUN 397 [47]

contains 397 classes of scene images and more than a mil-

lion images. MITIndoor [46] is an indoor scene dataset

with 67 classes and 80 samples per class. FGVC-Aircraft

Benchmark [26] is a fine-grained classification dataset of

10, 000 images of 100 types of airplanes. Flowers102 [32]

is a fine-grained dataset with 102 flower categories and 40
to 258 images per class. CIFAR100 [20] contains 60, 000
tiny images, from 100 classes. Caltech256 [12] contains

30, 607 images of 256 object categories, with at least 80
samples per class. SVHN [31] is a digit recognition dataset

with 10 classes and more than 70, 000 samples. In all cases,

images are resized to 224× 224 and the training and testing

splits defined by the dataset are used, if available. Other-

wise, 75% is used for training and 25% for testing.

Implementation: In all experiments, fixed F layers

were extracted from a source VGG16 [42] model trained

on ImageNet. This has convolution layers of dimensions

ranging from 64 to 4096. In a set of preliminary experi-

ments, we compared the MDL performance of the architec-

ture of Figure 1 with these F layers and adaptation layers

implemented with 1) a convolutional layer A of kernel size

1 × 1 [38], 2) the residual adapters T = B2(I + AB1)
of [34], where B1 and B2 are batch normalization layers

and A as in 1), and 3) the parallel adapters of [35]. Since

residual adapters produced the best results, we adopted this

structure in all our experiments. However, CovNorm can be

used with any of the other structures, or any other matrix A.

Note that B1 could be absorbed into A after fine-tuning but

we have not done so, for consistency with [34].

In all experiments, fine-tuning used initial learning rate

of 0.001, reduced by 10 when the loss stops decreasing. Af-

ter fine-tuning the residual layer, features were extracted at

the input and output of A and the PCAs Px,Py computed
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Figure 5: Ratio of effective dimensions (η) for different network layers.

Left: MITIndoor. Right: CIFAR100.
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Figure 6: accuracy vs. % of parameters used for adaptation. Left: MITIn-

door. Right: CIFAR100.

and used in Algorithm 1. Principal components were se-

lected by the explained variance criterion. Once the eigen-

values ei were computed and sorted by decreasing magni-

tude, i.e. e1 ≥ e2 ≥ . . . ≥ ed, the variance explained by

the first i eigenvalues is ri =
∑i

k=1
ei∑

d
k=1

ei
. Given a threshold t,

the smallest index i∗ such that ri∗ > t was determined, and

only the i∗ first eigenvalues/eigenvectors were kept. This

set the dimensions kx, ky (depending on whether the proce-

dure was used on Px or Py). Unless otherwise noted, we

used t = 0.99, i.e. 99% of the variance was retained.

Benfits of CovNorm: We start with some independent

MDL experiments that provide insight on the benefits of

CovNorm over previous MDL procedures. While we only

report results for MITIndoor and CIFAR100, they are typi-

cal of all target datasets. Figure 5 shows the ratio η = ky/kx
of effective output to input dimensions, as a function of

adaptation layer. It shows that the input of A typically con-

tains more information than the output. Note that η is rarely

one, is almost always less than 0.6, frequently smaller than

0.3, and smallest for the top network layers.

We next compared CovNorm to batch normalization

(BN) [2], and geometric approximations based on the fine-

tunned approximation (FTA) of Section 3.3. We also tested

a mix of the geometric approaches (SVD+FTA), where A

was first approximated by the SVD and the matrices C, W

finetuned on T , and a mix of PCA and FTA (PCA+FTA),

where the mini-adaptation layer Mx,y of CovNorm was re-

moved and C̃y,W̃x fine-tuned on T , to minimize the PCA

alignment problem. All geometric approximations were im-

plemented with low-rank parameter values r = d/2i, where

d is the dimension of x or y and i ∈ {2, . . . , 6}. For

CovNorm, the explained variance threshold was varied in

[0.8, 0.995]. Figure 6 shows recognition accuracies vs. the

% of parameters. Here, 100% parameters corresponds the

adaptation layers of [34]: a network with residual adapters

whose matrix A is fine-tunned on T . This is denoted RA

and shown as an upper-bound. A second upper-bound is

shown for full network fine tuning (FNFT). This requires

10× more parameters than RA. BN, which requires close to

zero parameters, is shown as a lower bound.

Several observations are possible. First, all geomet-

ric approximations underperform CovNorm. For compa-

rable sizes, the accuracy drop of the best geometric method

(SVD+FTA) is as large as 2%. This is partly due to the use

of a constant low rank r throughout the network. This can-

not match the effective, data-dependent, dimensions, which

vary across layers (see Figure 5). CovNorm eliminates this

problem. We experimented with heuristics for choosing

variable ranks but, as discussed below (Figure 7), could

not achieve good performance. Among the geometric ap-

proaches, SVD+FTA outperforms FTA, which has perfor-

mance drops in most of datasets. It is interesting that, while

A is fine-tuned with random initialization, the process is

not effective for the low-rank matrices of FTA. In several

datasets, FTA could not match SVD+FTA.

Even more surprising were the weaker results obtained

when the random initialization was replaced by the two

PCAs (PCA+FTA). Note the large difference between

PCA+FTA and CovNorm (up to 4%), which differ by the

mini-adaptation layer Mx,y . This is explained by the align-

ment problem of Section 3.5. Interestingly, while mini-

adaptation layers are critical to overcome this problem, they

are as easy to fine-tune as A. In fact, the addition of these

layers (CovNorm) often outperformed the full matrix A

(RA). In some datasets, like MITIndoor, with 4.8% of the

parameters, CovNorm matched the performance of RA, Fi-

nally, as previously reported by [34], FNFT frequently un-

derperformed RA. This is likely due to overfitting.

CovNorm vs SVD: Figure 7 provides empirical evi-

dence for the vastly different quality of the approximations

produced by CovNorm and the SVD. The figure shows a

plot of the variance explained by the eigenvalues of the in-

put and output distributions of an adaptation layer A and

the corresponding plot for its singular values. Note how the

PCA energy is packed into a much smaller number of coeffi-

cients than the singular value energy. This happens because

PCA only accounts for the subspaces populated by data,

restricting the low-rank approximation to these subspaces.

Conversely, the geometric approximation must approximate

the matrix behavior even outside of these subspaces. Note

that the SVD is not only less efficient in identifying the im-

portant dimensions, but also makes it difficult to determine

how many singular values to keep. This prevents the use of

a layer-dependent number of singular values.

Comparison to previous methods: Table 1 summarizes

the recognition accuracy and % of adaptation layer param-
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Table 1: Classification accuracy and % of adaptation parameters (with respect to VGG size) per target

dataset.

FGVC MITIndoor Flowers Caltech256 SVHN SUN397 CIFAR100 average

FNFT 85.73% 71.77% 95.67% 83.73% 96.41% 57.29% 80.45% 81.58%

100% 100%

Independent learning

BN [2] 43.6% 57.6% 83.07% 73.66% 91.1% 47.04% 64.8% 65.83%

0% 0%

LwF[23] 66.25% 73.43% 89.12% 80.02% 44.13% 52.85% 72.94% 68.39%

0% 0%

RA [34] 88.92% 72.4% 96.43% 84.17% 96.13% 57.38% 79.55% 82.16%

10% 10%

SVD+FTA 89.07% 71.66% 95.67% 84.46% 96.04% 57.12% 78.28% 81.75%

5% 5%

FTA 87.31% 70.26% 95.43% 83.82% 95.96% 56.43% 78.23% 81.06%

5% 5%

CovNorm 88.98% 72.51% 96.76% 84.75% 96.23% 57.97% 79.42% 82.37%

0.34% 0.62% 0.35% 0.46% 0.13% 0.71% 1.1% 0.53%

Joint learning

SVD [35] 88.98% 71.7% 96.37% 83.63% 96% 56.58% 78.26% 81.65%

5% 5%

CovNorm 88.99% 73.0% 96.69% 84.77% 96.22% 58.2 79.22% 82.44%

0.51% 0.51%
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Figure 7: Variance explained by eigenval-

ues of a layer input and output, and similar

plot for singular values. Left: MITIndoor.

Right: CIFAR100.

ImNet Airc C100 DPed DTD GTSR Flwr OGlt SVHN UCF avg acc S #par

RA [34] 59.67% 61.87% 81.20% 93.88% 57.13% 97.57% 81.67% 89.62% 96.13% 50.12% 76.89% 2621 2

DAN [39] 57.74% 64.12% 80.07% 91.3% 56.54% 98.46% 86.05% 89.67% 96.77% 49.38% 77.01% 2851 2.17

Piggyback [27] 57.69% 65.29% 79.87% 96.99% 57.45% 97.27% 79.09% 87.63% 97.24% 47.48% 76.6% 2838 1.28

CovNorm 60.37% 69.37% 81.34% 98.75% 59.95% 99.14% 83.44% 87.69% 96.55% 48.92% 78.55% 3713 1.25

Table 2: Visual Decathlon results

eters vs. VGG model size (100% parameters), for various

methods. All abbreviations are as above. Beyond MDL,

we compare to learning without forgetting (LwF) [23] a

lifelong method to learn a model that shares all parame-

ters among datasets. The table is split into independent and

joint MDL. For joint learning, CovNorm is implemented

with (10) and compared to the SVD approach of [35].

Several observations can be made. First, CovNorm

adapts the number of parameters to the task, according to

its complexity and how different it is from the source (Ima-

geNet). For the simplest datasets, such as the 10-digit class

SVHN, adaptation can require as few as 0.13% task-specific

parameters. Datasets that are more diverse but ImageNet-

like, such as Caltech256, require around 0.46% parameters.

Finally, larger adaptation layers are required by datasets that

are either complex or quite different from ImageNet, e.g.

scene (MITIndoor, SUN397) recognition tasks. Even here,

adaptation requires less than 1% parameters. On average,

CovNorm requires 0.53% additional parameters per dataset.

Second, for independent learning, all methods based on

residual adapters significantly outperform BN and LwF. As

shown by [34], RA outperforms FNFT. BN is uniformly

weak, LwF performs very well on MITIndoor and Cal-

tech256, but poorly on most other datasets. Third, Cov-

Norm outperforms even RA, achieving higher recognition

accuracy with 20× less parameters. It also outperforms

SVD+FTA and FTA by ≈ 0.6% and ≈ 1.3%, respectively,

while reducing parameter sizes by a factor of ≈ 10. On a

per-dataset basis, CovNorm outperforms RA on all datasets

other than CIFAR100, and SVD+FTA and FTA on all of

them. In all datasets, the parameter savings are significant.

Fourth, for joint training, CovNorm is substantially supe-

rior to the SVD [35], with higher recognition rates in all

datasets, gains of up to 1.62% (SUN397), and close to 10×
less parameters. Finally, comparing independent and joint

CovNorm, the latter has slightly higher recognition for a

slightly higher parameter count. Hence, the two approaches

are roughly equivalent.

Results on Visual Decathlon Table 2 presents results

on the Decathlon challenge [34], composed of ten differ-

ent datasets of small images (72 × 72). Models are trained

with a combination of training and validation set and results

obtained online. For fair comparison, we use the learning

protocol of [34]. CovNorm achieves state of the art perfor-

mance in terms of classification accuracy, parameter size,

and decathlon score S.

5. Conclusion

CovNorm is an MDL technique of very simple imple-

mentation. When compared to previous methods, it dramat-

ically reduces the number of adaptation parameters without

loss of recognition performance. It was used to show that

large CNNs can be “recycled” across problems as diverse

as digit, object, scene, or fine-grained classes, with no loss,

by simply tuning 0.5% of their parameters.
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