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Abstract. For image generation with diffusion models (DMs), a nega-
tive prompt n can be used to complement the text prompt p, helping de-
fine properties not desired in the synthesized image. While this improves
prompt adherence and image quality, finding good negative prompts is
challenging. We argue that this is due to a semantic gap between humans
and DMs, which makes good negative prompts for DMs appear unintu-
itive to humans. To bridge this gap, we propose a new diffusion-negative
prompting (DNP) strategy. DNP is based on a new procedure to sample im-
ages that are least compliant with p under the distribution of the DM,
denoted as diffusion-negative sampling (DNS). Given p, one such image is
sampled, which is then translated into natural language by the user or a
captioning model, to produce the negative prompt n∗. The pair (p, n∗)
is finally used to prompt the DM. DNS is straightforward to implement
and requires no training. Experiments and human evaluations show that
DNP performs well both quantitatively and qualitatively and can be easily
combined with several DM variants.
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1 Introduction

Diffusion models (DMs) [19, 22, 24] have shown exquisite capacity to synthesize
visually appealing images guided by textual prompts. However, they are not easy
to control. While the synthesized images are usually impressive, various classes of
prompts are known to be difficult, e.g. prompts involving humans [12], hands [17],
or multiple objects and their interactions [3]. The synthesized image quality
can often be unsatisfactory for such prompts, and prompt adherence is usually
weak. This is illustrated in Figure 1, which shows an image synthesized by Stable
Diffusion (SD) for a complex prompt p. The problem can be mitigated by adding
alternative conditioning inputs to the diffusion model, such as visual conditioning
with sketches or layouts [31,32]. This, however, usually requires skilled users and
can be labor-intensive. Ideally, it should be possible to improve consistency with
text prompts alone. In this work, we explore negative prompting [16], which has
been quite effective but is difficult to use. We argue that this difficulty stems
from a semantic gap between the concept representations of a human user and
the DM. We then introduce a new prompting technique, denoted as diffusion-
negative prompting (DNP), to bridge this gap, as illustrated in Figure 1.
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Fig. 1: DNP improves quality of synthesis for prompts p (green) of SD’s images (top-
right). A diffusion-negative image, Ī, is sampled using DNS, enabling the user to visual-
ize the negation of p under DM’s distribution. The user translates the Ī into a negative
prompt n∗ (red), by a process denoted as DNP, and the DM is prompted with the pair
(p,n∗). This increases compliance and quality of the synthesized image (bottom-right).
Replacing the user with a captioning model is denoted as auto-DNP.

Negative prompting complements the text prompt p, e.g. “an airplane stand-
ing on the runway", with negative prompts n, e.g. “flying" or “soaring". As il-
lustrated in the top row of Figure 2a, this greatly improves compliance of the
synthesized image with prompt p and can improve image quality. However, neg-
ative prompts are difficult to use, for two reasons. First, there are many prompts,
e.g. see p = “a cat and a dog" in Figure 2b, without a clear negative. Second,
even when an intuitive negative exists, e.g. “flying" vs. “standing", it is not nec-
essarily a successful negative for DMs across seeds, as seen in the bottom row of
Figure 2a. This raises the question: what is a good negative prompt for a DM?
In general, n is a good negative prompt if the images synthesized by prompt-pair
(p,n) adhere more to p than those synthesized by p alone. This, however, is
a DM-centric definition of negative prompt. The problem is that the semantic
representation of the DM is only a weak approximation to that used by a hu-
man. In general, DMs cannot replicate the human definition of concept negation.
We refer to this problem as the semantic gap between DMs and humans. As a
result, good negative prompts for a DM are frequently not intuitive for humans,
i.e. what a human would consider a negative for p. This makes it difficult for
users to produce good negative prompts for DMs.

In this work, we address this problem by devising a strategy that enables hu-
mans to visualize the concepts that DMs consider negatives for prompt p. This
procedure is inspired by classifier-free guidance (CFG) [11]. While CFG uses a
sampling guidance factor that increases the probability of images compliant with
p, we introduce a diffusion-negative sampling (DNS) guidance factor that encour-
ages the sampling of the diffusion-negative images, Ī, least compliant with p,
under the DM’s image distribution. This Ī usually does not comply with the
human understanding of the negation of concepts in p. However, because it rep-
resents the DM’s understanding of this negation, it can be shown to the user to
overcome the semantic gap between them. The user can then produce a negative
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p: an airplane standing on the runway
n: “" n: flying n: soaring

p: an airplane standing on the runway
n: “" n: flying n: soaring

(a) Semantic negatives: While effective,
they do not guarantee compliance across
seeds. Success (top), failure (bottom).

p: a cat and a dog
n: “" n: two dogs n: two cats, two dogs n: ugly, brown

p: a cat and a dog
n: “" n: two cats n: two cats, two dogs n: ugly, brown

(b) Non-semantic negatives: A good negative prompt
needs multiple iterations for every seed as they can be
highly unintuitive.

Fig. 2: Example of negative prompting for both semantic and non-semantic scenarios.
The positive prompt, p and negative prompts, n are on top of each image.

prompt n∗ in the language of the DM by simply captioning Ī. Prompting the
DM with the pair (p,n∗) usually produces better images than with p alone.

Figure 1 shows how DNP can help when DMs produce poor-quality images.
In response to the user prompt p = “woman in black dress on the red carpet
wearing a ring on the finger”, SD generates the top image, with distorted hands
and rings. The rest of the figure illustrates DNP. Given the prompt p, the DM
samples a negative image Ī(p) using DNS. In the figure, Ī contains the house
with a garden. The user inspects the image and produces a diffusion-negative
prompt n∗(Ī) = “a white home with a garage and grass in the front yard” that
reflects the content of this image. This is similar to captioning the image, and
can also be done automatically by an image captioning model, resulting in what
we denote as auto-DNP. Finally, the DM is prompted with the pair (p,n∗) to
produce an image that has much better compliance with p than the original.

Our experiments show that DNP improves prompt adherence and image qual-
ity, both in terms of quantitative metrics, like CLIP scores of image-prompt
similarity, and subjective ratings by human evaluators. This is shown to hold
both for vanilla DMs, like SD, and DMs optimized for solving specific problems,
e.g. the A&E [3] model tailored to synthesize images containing multiple objects.
Various ablations also show that DNP outperforms negative prompting solutions
commonly used by practitioners, e.g. using a dictionary of universal negative
prompts, random prompts, etc. It also provides much-needed transparency to
the negation process. auto-DNP provides a fully automated implementation of
DNP. While not as effective as DNP, it maintains all the benefits discussed above,
avoids user captioning effort, and allows automatic comparisons to other neg-
ative prompting procedures. Finally, our experiments consistently demonstrate
the existence of a semantic gap between DMs and humans. Although the nega-
tive images generated by DNS are frequently very unintuitive for humans, they
help the DM significantly when translated into negative prompts.
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Overall, this paper makes the following contributions. First, we hypothe-
size that DM image synthesis can be substantially enhanced by using negative
prompts. However, these prompts are difficult for humans to generate, due to the
semantic gap between humans and DMs, which leads to a different understand-
ing of concept negation. Second, we introduce the DNS procedure to overcome this
semantic gap, allowing humans to visualize the negative concept as understood
by the DM. This enables negative prompting with DNP, as shown in Figure 1.
Third, we present extensive experiments on various datasets, showing that DNP
complements any existing DM or its variant. Fourth, we show that the process
can be automated by using a pre-trained image captioner, leading to auto-DNP.
Finally, we show that DNP is trivial to implement and requires no training.

2 Diffusion Models

Latent Diffusion: DMs combine a forward and a backward process for gener-
ative modeling. In the forward process, a sample is gradually corrupted by se-
quential application of small amounts of Gaussian noise. The backward process
then sequentially denoises the sample using a learned neural network ϵθ. Latent
DMs (LDMs) increase the efficiency of the diffusion process by operating on
the low dimensional latent space Z of an autoencoder, implemented with a pre-
trained encoder/decoder pair (E(.),D(.)). This transforms image x ∈ X into la-
tent representation z = E(x) ∈ Z and reconstructs the image with x = D(E(z)).
Training: In the forward process, a noisy version of the latent representation is
obtained at each time step t with zt =

√
ᾱtz+

√
1− ᾱtϵ. Here, ᾱt =

∏t
s=1(1−βs),

where {β1, ..., βT } is fixed according to the variance schedule and ϵ ∼ N (0, I).
In the backward process, the denoising model ϵθ estimates the noise ϵt added to
the noisy latent representation at each time step t. The denoising is conditioned
by the embedding τ(p), of text prompt p, where τ(.) is a text encoder. The
denoising network parameters are learned by minimizing the loss

L = Et∼U(1,T ),ϵt∼N (0,I)

[
∥ϵt − ϵθ(zt; t, τ(p))∥2

]
, (1)

where U and N are the uniform and Gaussian distributions, respectively.
Inference: Given prompt p, images are sampled by iteratively alternating be-
tween denoising and sampling, with

ϵ̂p = ϵθ(zt; t, τ(p)), zt−1 = sample(zt, ϵ̂p, t). (2)

The sampling method, sample, varies with the DM. Popular approaches are
DDPM [9] and DDIM [27]. This process is initialized with a noise seed zT ∼
N (0, I) and produces a latent image code z0, which is finally passed to the
decoder to obtain image x0 = D(z0).
Classifier-free Guidance: CFG [11] is a method to trade off prompt com-
pliance and image diversity. It consists of training the DM with and without
prompt p, randomly setting p to the empty prompt ϕ="", with probability
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Puncond = 0.1. At inference, each denoising step uses a linear combination of the
prompt-conditional (ϵ̂p) and unconditional (ϵ̂ϕ) noise estimates

ϵ̂ = ϵ̂ϕ + s(ϵ̂p − ϵ̂ϕ), (3)

where ϵ̂p = ϵθ(zt; t, τ(p)), ϵ̂ϕ = ϵθ(zt; t, τ(ϕ)), and s is an hyper-parameter that
controls the conditioning strength, known as the guidance-scale. The modified
noise ϵ̂ is then utilized to update the latent representation.
Negative Prompting: Despite conditioning on text prompt p, prompt ad-
herence of CFG can be weak when p refers to complex scenes, such as that in
Figure 1. Negative prompting [16] is useful as an extra conditioning input. Given
negative prompt n, the inference denoising steps are implemented with

ϵ̂ = ϵ̂ϕ + s(ϵ̂p − ϵ̂n) (4)

where
ϵ̂n = ϵθ(zt; t, τ(n)). (5)

Practitioners have shown that simply replacing the empty prompt ϕ of CFG
with the negative prompt n, i.e. using ϵ̂ = ϵ̂n + s(ϵ̂p − ϵ̂n), yields similar re-
sults, albeit for a slightly different guidance scale s [1]. This has the benefit of
computational efficiency, as it only requires the calculation of two noise vectors
instead of three. Hence, this method has gained popularity and has become the
default implementation of negative prompting in many T2I generation models.
However, in what follows, we use the theoretically more grounded (4) to derive
a procedure to sample diffusion-negative images (Ī).

3 Creating Good Negative Prompts

In this section, we introduce DNP.

3.1 Energy-based model interpretation

Sampling with a DM of network ϵθ(zt; t, τ(p)) can be interpreted as sampling
from probability distribution pθ(zt|p) ∝ e−Eθ(zt;t,τ(p)), where Eθ is an energy
function, using the score function ∇z logP (z|p) and Longevin dynamics [28,30].
The DM network is trained to learn the score function, i.e.

ϵθ(zt; t, τ(p)) = −∇zt log pθ(zt|τ(p)). (6)

This motivates the CFG denoising step of (3), which corresponds to sampling
from the distribution

pcfg(zt,p) ∝ pθ(zt)γ
s
cfg(zt,p) (7)

where
γcfg(zt,p) =

pθ(zt|p)
pθ(zt)

∝ pθ(p|zt) (8)
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is a guidance factor that increases the probability of codes zt corresponding to
images compliant with prompt p. Similarly, the negative prompt denoising step
of (4) corresponds to sampling from

pnp(zt,p,n) ∝ pθ(zt)γ
s
np(zt,p,n) (9)

with guidance factor

γnp(zt,p,n) =
pθ(zt|p)
pθ(zt|n)

∝ pθ(p|zt)
pθ(n|zt)

. (10)

This increases the probability of sampling latent codes zt of large odds ratio

o(zt,p,n) =
pθ(p|zt)
pθ(n|zt)

. (11)

Since the Bayes decision rule for deciding between p and n is to choose p when
o(zt,p,n) ≥ 1 and n otherwise, it increases the probability that sampled codes
comply with prompt p and not with prompt n.

3.2 Limitations of Negative Prompting

Besides being theoretically well-motivated, negative prompting frequently im-
proves image quality, as illustrated in the top row of Figure 2a. However, negative
prompts are difficult to specify, because a natural negative frequently does not
exist or does not produce the intended results. Figure 2b shows an example for
prompt p = “a cat and a dog”. Here, the user may need to attempt several neg-
ative prompts n, requiring multiple iterations of image synthesis, as illustrated
in the figure. Eventually, the user notices the insistence of the DM in brown
objects and uses n = “brown”. This is complemented with “ugly”, which practi-
tioners have identified as a good general-use negative prompt. To compound the
problem, a negative prompt successful for one random seed can be unsuccessful
for another seed, i.e. good negative prompts depend on both prompt p and seed
zT , as illustrated in Figure 2a. In summary, negative prompting is an art form
and can be quite cumbersome, even when successful.

In practice, the human-provided negative prompt frequently fails to improve
the quality of the image generated by the DM. We hypothesize that this is be-
cause the semantic representation of the DM is only a weak approximation to
that of humans. Hence, there is no guarantee that, under the probability distri-
bution modeled by the DM, there will be a large classification margin between
p and the human-provided n. In this case, negative prompting fails to produce
samples of large odds ratio o(zt,p,n) and the prompt pair (p,n) fails to induce
the model to produce more prompt compliant images than those generated with
CFG, i.e. the posterior probability pθ(p|zt) of (8). In the extreme case where
pθ(p|zt) ≈ pθ(n|zt) for the samples of high pθ(p|zt), o(zt,p,n) ≈ 1 for those
samples and (9) looses all sensitivity to prompt p.
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3.3 Diffusion-Negative Guidance

The discussion above suggests that a good negative prompt for the DM “grounds”
the odds-ratio of (11), providing a reference for the prompt p, which is defined in
terms of the margin to negative n. However, this grounding must happen under
the internal representation of the DM, which is not necessarily that of humans.
The goal is to encourage samples more likely to comply with given prompt p
than the negative prompt, under the conceptual representation of the model . We
formalize this goal by defining the optimal negative prompt n∗ for the DM as
the one that maximizes the steepness of the odds ratio with p, i.e.

n∗(p) = argmax
n

∇zt log o(zt,p,n). (12)

This is denoted as the diffusion-negative prompt for p. Using (2), (5), and (11),

∇zt log o(zt,p,n) = ∇zt log
pθ(p|zt)
pθ(n|zt)

= ∇zt log
pθ(zt|p)
pθ(zt|n)

= ϵ̂p − ϵ̂n. (13)

Hence, for a given zt, a natural alternative definition of the diffusion-negative
prompt is that which induces the noise vector maximally distant from ϵ̂p, i.e.

ϵn∗ = argmax
n|∥ϵ̂n∥2=K

∥ϵ̂p − ϵ̂n∥2 (14)

where K prevents the noise magnitude from becoming infinitely large. This is the
prompt that induces the steeper log odds surface at zt, encouraging the largest
margin between the probabilities pθ(zt|p) and pθ(zt|n∗) in the neighborhood of
zt. In Supplementary Section 1, we show that (14) has a solution

ϵ̂n∗ = −
√
K

ϵ̂p
∥ϵ̂p∥

∝ −ϵ̂p. (15)

Choosing K = ∥ϵ̂p∥2, i.e. equal noise strength under the positive and negative
conditions, results in ϵ̂n∗ = −ϵ̂p.

3.4 Diffusion-Negative Sampling (DNS)

It follows from (6) that

∇zt log pθ(zt|n∗) = −∇zt log pθ(zt|p) =⇒ pθ(zt|n∗) ∝ 1

pθ(zt|p)
. (16)

However, for most pθ(zt|n), (16) is an improper distribution [4]. This stems
from the fact that a negative condition must be specified in context [5]. A general
contextual constraint for DM-based sampling is that the negatively conditioned
DM should still sample images from the image distribution pθ(zt). To account
for this, we define the diffusion-negative guidance factor as

γdn(zt,p) =
pθ(zt)

pθ(zt|p)
∝ 1

pθ(p|zt)
, (17)
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which leads to the diffusion-negative distribution

pdn(zt,p) ∝ pθ(zt)γ
s
dn(zt,p) (18)

and inference denoising equation

ϵ̂ = ϵ̂ϕ + s(ϵ̂ϕ − ϵ̂p). (19)

Sampling with this equation is denoted as diffusion-negative sampling (DNS).
When compared to (10), the diffusion-negative guidance factor of (17) has two
main differences. First, it does not require the semantic negative prompt n, re-
flecting the fact that the definition of negative is fully based on the internal
representation of the DM. Second, it replaces the odds ratio of (11) by the ra-
tio between the image distribution pθ(zt) and the image distribution under the
positive condition p. This emphasizes sampling images from the DM probabil-
ity distribution with the lowest prompt conditional probability pθ(zt|p). When
compared to the guidance factor (8) of CFG, (17) simply flips the role of the
image distributions pθ(zt) and pθ(zt|p). This provides a simple interpretation of
diffusion-negative guidance as the “opposite” of CFG. Rather than sampling nat-
ural images that align best with the condition p, it emphasizes sampling natural
images that least comply with it.

The relation between the guidance factors of (17) and (10)

γdn(zt,p) =
pθ(zt)

pθ(zt|p)
= γnp(zt, ϕ,p) (20)

makes the implementation of DNS trivial for any model that supports negative
prompting. It suffices to prompt the latter with empty positive prompt ϕ and
negative prompt p. Hence, DNS requires no retraining of the DM, nor any opti-
mizations at inference.

3.5 Diffusion-Negative Prompting (DNP)

DNP relies on DNS to implement the procedure of Figure 1. Given prompt p, DNS
is used to sample a diffusion-negative image, Ī, as discussed above. This image is
then captioned by the user, to produce the DNP n∗. The DM is finally prompted
with the prompt pair (p,n∗) to produce the final image. As illustrated in Fig-
ure 1, the captioning step can be performed by either the user or any captioning
model. In the latter case, the process is denoted auto-DNP. auto-DNP has the
advantage of fully automating DNP, making the entire process transparent to the
user and reducing user effort. The price is a small increase in the failure rate due
to captioning errors. In this paper, we use BLIP2 [14] as the captioning model to
implement auto-DNP. However, auto-DNP can be used with any other captioner.
We show results obtained with GPTv4 (gpt-4-vision-preview) in Supplementary
Section 4. Figure 3 and the final column of Figure 4 illustrate how DNP produces
images that either have higher quality or comply better with the prompt p.
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4 Experiments

In this section, we discuss the experimental evaluation of DNP.

4.1 Datasets

For a comprehensive dataset description see Supplementary Section 2.2
Existence and Attribute Binding (A&E) Dataset: This is the benchmark
dataset introduced by [3]. This dataset is focused on entity neglect, which occurs
when one or more entities are completely ignored by the generative model, and
attribute assignment, which evaluates whether an attribute is associated with
the correct object in the image. To evaluate these, each prompt in the dataset
comprises two entities and their associated attributes. There are three categories
of prompts: (1) “an animal and an animal”; (2) “a color in-animate object and
an animal”; (3) “a color in-animate object and a color in-animate object”. We
sample 50 prompts from each category for 32 random seeds.
Human and Hand Generation (H&H) Dataset: Humans and hands occur
in various shapes and forms, including gender, race, activity, and individual
differences. Despite the size of the training datasets, this variation has posed a
major challenge to DMs, which are known to synthesize images with extra or
merged limbs and fingers. We curated a challenging benchmark dataset to test
the effect of DNP on human and hand generation. The dataset consists of 45
human-based prompts such as “a man wearing a sombrero” and 25 hand-based
prompts such as “hand with a ring on it”. We run all prompts for 32 seeds.

4.2 Evaluation Metrics

Text-Image CLIP Score: [8] is a widely used metric of the similarity between
a generated image and its text prompt. For the H&H dataset, we calculate the
CLIP Score between each generated image and its corresponding prompt. For
the A&E dataset, we follow the evaluation protocols established by [3], which
measure CLIP Score at full prompt and entity level. For evaluating the Full
Prompt CLIP Score, we calculate the score between the generated image and
the full prompt. For the Minimum Object CLIP Score, we take the minimum
score between the entities in the prompt, as the entity with the minimum CLIP
Score represents the neglected entity for the given prompt. This allows us to
measure the CLIP Score at two levels, thereby providing better insight into the
presence of both entities in the A&E dataset prompts.
Inception Score (IS): [25] is a popular metric for assessing the quality and
realism of images. It is the exponential of the average of the entropy of the
label distribution predicted by the Inception v3 classifier model. In particular,
we choose IS over FID as it does not require a dataset with real images.
Human Evaluation: While CLIP Score and IS provide an objective measure of
correctness and quality, they are known for not being fully aligned with human
aesthetics and preferences. To evaluate DNP in terms of human preferences, we
used Amazon Mechanical Turk (AMT) to evaluate a subset of each dataset. We
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Method
CLIP Score

Human Hand A&E
Min. Object Full Prompt

SD+auto-DNP 0.330 0.323 0.250 0.344
SD+DNP 0.331 0.324 0.253 0.345

Table 1: Benchmarking DNP to auto-DNP with CLIP Score.

performed human evaluation on 100 prompt-seed pairs for the human dataset,
100 pairs for the Hands dataset, and 150 (50 per category) pairs for the A&E
dataset. The evaluators were asked to compare the images using two criteria.
1) Adherence to the prompt, and 2) Quality (natural or realistic nature) of the
image. MTurkers were tasked with choosing one image based the two criteria.
They could also choose no clear winner if they did not prefer one over the other.
More details can be found in the Supplementary Section 2.3.

4.3 Benchmarking DNP vs auto-DNP

The evaluation of DNP requires human users. PhD students, with no experience
in visual language research, were shown an image and asked to produce a caption
shorter than 60 words. Due to the prohibitive resources required to caption the
image Ī for all prompt-seed pairs of all the datasets, we restricted the evaluation
of DNP to the prompt-seed pairs used for human evaluation. We compared the
performance of DNP and auto-DNP on this set and used auto-DNP in the remain-
ing experiments. Besides being cost-effective, this enables the replication of our
experiments for comparison to other negative prompting methods. Table 1 com-
pares the performance of DNP and auto-DNP, on the prompt-seed pairs used for
the human evaluation1. For the rest of the paper, we use the notation DM+X,
where DM is the diffusion model and X the negative prompting method.

While DNP achieves the best performance, auto-DNP provides almost identical
results. This suggests that the BLIP2 model is quite effective at captioning the
diffusion-negative negative images Ī.

4.4 Quantitative Results

We next discuss the results of quantitative experiments on image quality using
auto-DNP. Various ablations are also presented in Supplementary Section 4.
A&E dataset: We first compare SD to SD+auto-DNP, on the A&E dataset in
Table 2a. SD+auto-DNP achieves a Min. Object CLIP Score of 0.258, which is
6.6% higher than that of SD, illustrating that SD+auto-DNP generates images
that align better with the prompts. Since CLIP scores practically range from
[0, 0.4] [8], the full prompt CLIP Score of 0.346 of SD+auto-DNP suggests good
alignment between prompt and image. Human evaluation underscores the true
1 IS score cannot be computed in this case as the number of seeds per prompt is not

large enough for IS to provide reliable results.
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Method CLIP Score IS Human Evaluation
Min. Object Full Prompt Correctness Quality

No Clear Winner - - - 16.88% 10.46%
Stable Diffusion (SD) 0.242 0.335 13.17 18.90% 25.73%

SD+auto-DNP 0.258 (+6.61%) 0.346 (+3.28%) 13.35 (+1.37%) 64.22% 63.81%
No Clear Winner - - - 16.95% 7.35%

Attend & Excite (A&E) 0.264 0.349 11.86 30.06% 33.12%
A&E+auto-DNP 0.276 (+4.54%) 0.362 (+3.72%) 13.12 (+10.62%) 52.99% 59.53%

(a) Quantitative Results on the A&E dataset.

Dataset Method CLIP Score IS Human Evaluation
Correctness Quality

Human Prompts
No Clear Winner - - 14.42% 5.10%

Stable Diffusion (SD) 0.322 9.95 27.60% 29.0%
SD+auto-DNP 0.331 (+2.80%) 10.13 (+1.80%) 57.98% 65.80%

Hand Prompts
No Clear Winner - - 19.89% 8.18%

Stable Diffusion (SD) 0.309 12.04 20.45% 22.47%
SD+auto-DNP 0.321 (+3.88%)) 12.39 (+2.94%) 59.66% 69.35%

(b) Quantitative Results on the H&H dataset.

Table 2: Quantitative Results: comparing prompt adherence and image quality by
CLIP Score, IS and Human Evaluation. The percentage gains are shown in (brackets)

strength of DNP, as human evaluators prefer images generated by SD+auto-DNP
3.4× more in terms of correctness and 2.5× more in terms of quality than those
generated by SD. Note that SD+auto-DNP even outperforms the A&E model
in IS and matches its CLIP Score for both full prompt and minimum object,
despite not being specifically designed for multiple object generation.

To demonstrate the flexibility of the DNP approach, we also applied it to
the A&E model, comparing A&E+auto-DNP to A&E. We observe a moderate
increase in the CLIP Score since A&E is already quite efficient at generating
multiple objects. A&E+auto-DNP achieves a Min. Object CLIP Score of 0.276,
which is very close to the theoretical upper bound for Min. Object CLIP Score
of 0.29 as defined by [3]. The 10.62% improvement in IS shows that A&E is
more inclined to generate unrealistic images and the addition of DNP improves its
realism. The human evaluation also reflects this, as around 53% of the evaluators
prefer A&E+auto-DNP over the A&E images for correctness and 60% for quality,
which is close to 1.8× the preference for A&E.

H&H dataset: Table 2b summarizes the ability of DNP to address the specific
SD weaknesses of synthesizing humans and hands. Since both CLIP and IS may
ignore distorted or maligned results when considering correctness or realism,
they fail to give substantial insight into image quality (despite improvement).
The human evaluation is much more important for this task. SD+auto-DNP
outperforms SD by a substantial margin, as evaluators prefer SD+auto-DNP
3× more for correctness and 2× more for quality, for both human and hand
prompts. Since evaluators were specifically tasked with checking the number and
pose of limbs and fingers and the quality of the faces, their preference for images
generated with DNP shows that the latter improves SD performance substantially.



12 A. Desai and N. Vasconcelos

Prompts with Humans Prompts with Multiple Nouns Prompts with Hands

p: a boy in the moonlight p: a cat and a dog p: a hand with a ring on it
n∗: a living room with a fireplace and wooden beams n∗: an aerial view of a resort with a swimming pool n∗: a woman in a black dress on the red carpet

p: a man in a sombrero p: a boy playing with his dog p: a closeup of a handshake
n∗: a modern three story townhouse with two garages n∗: three bowls of stew with vegetables and herbs n∗: an aerial view of a large home in the woods

p: a child on the couch p: a bear with a brown crown p: a tattooed hand
n∗: men and women in suits and ties in front of a crowd n∗: a rendering of the plans for a home n∗: four pictures of a house, a car and a tree

Fig. 3: Images synthesized by SD (left) for prompt p vs. SD+auto-DNP (right) for
prompt pair (p, n∗), where n∗ is the DNP estimated from the DNS image. DNP produces
negative prompts that are not intuitive for humans but improve quality and adherence.

4.5 Qualitative Results

Figure 3 shows qualitative examples from the three datasets, comparing SD with
SD+auto-DNP. There are more visual examples in Supplementary Section 5.

The H&H dataset results, e.g. the images synthesized for prompt “hand with
a ring on it”, illustrate how auto-DNP improves the quality of humans and hands
in terms of the number of limbs, fingers, poses, etc. It also induces the model to
create realistic images, rather than drawings or sketches. See, for example, the
“man in a sombrero” and “boy in the moonlight” examples. We observe a major
improvement in the quality of the humans generated by auto-DNP wherein the
faces do not exhibit the uncanny, robotic, or distorted features that SD is inclined
to create, instead having a natural warmth.

The results on the A&E dataset show that auto-DNP can correct for entity
neglect while ensuring superior image quality. This is especially visible when we
compare A&E with A&E+auto-DNP (see Figures 5,6,7 in Supplementary Section
5), which produces more realistic images. We posit that auto-DNP’s inclination
towards generating more realistic images is due to setting the diffusion process
onto a better Markov chain without disrupting it at each step, unlike A&E.

Finally, note that none of the negative prompts produced by auto-DNP in Fig-
ure 3 is intuitive for humans. This illustrates the semantic gap between humans
and SD and the difficulty of producing good negative prompts manually.
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Stable Diffusion-Negative Stable SD+DNP
Stable Diffusion-Negative Stable SD+DNPDiffusion (SD) Sampling (DNS) Diffusion (SD) Diffusion (SD) Sampling (DNS) Diffusion (SD)

p: a path in a n∗: union jack
p: "" p: a path in a

p: a blue bird n∗: a red brick
p: "" p: a blue birdgreen forrest on green forrest house

n: "" a surfboard n: n∗ n: n∗ n: "" with garage n: n∗ n: n∗

Fig. 4: Exploring Semantic Gap: From left to right: 1) images generated for prompt
p, 2) DNS images generated by the DM and resulting caption n∗ by DNP, 3) images
synthesized with n∗ as the negative prompt alone, and 4) with prompt pair (p, n∗).

4.6 Semantic Gap

Figure 4 explores the semantic gap between humans and DMs in more detail.
From left to right, the first column shows images synthesized by SD with prompt
p. The second column shows examples of images sampled with DNS, i.e. (19).
These can be seen as images that the model hallucinates as “negatives” of the
prompt p since they usually do not have this interpretation for humans. The
caption n∗ is obtained the user. To confirm that the prompt mirrors the DM
internal representation of the “negative” for the image in the left column, we
prompted the model with an empty positive prompt p = ϕ and n∗ as a negative
prompt, which produces the images in the third column of the figure. Note how
these images comply with p even though n∗ is non-intuitive for a human. Finally,
the last column shows the result of prompting with the pair (p, n∗). In all cases,
the synthesized image is at least as good as that on the first column, and usually
better, e.g. a greener forest or a more realistic bird.

Two aspects are worth noting. First, these examples purposefully uses prompts
p for which SD works well. This proves that the “DM knows what it’s doing,”
at least to the point of generating a sensible image (first column). However, its
notion of negative is totally different from that of humans, demonstrating the
semantic gap between the two. The practical result is that a totally unintu-
itive negative prompt is needed to produce good images. Figure 3 shows that
auto-DNP can improve the quality and correctness of the synthesised image even
when the DM fails. Second, because all derivations above are functions of zt, the
DNS procedure is valid for any seed zT . This is an additional advantage over the
human-centric negative prompting of Figure 2a, whose success is seed-dependent.

5 Related Work

Text-to-Image Diffusion: High-resolution T2I generation has advanced dra-
matically with the introduction of large-scale diffusion models, due to: (1) avail-
ability of large-scale text-image datasets [2,26], (2) advances in various training
and inference techniques [9–11, 27], and, (3) development of scalable model ar-
chitectures [19, 20, 22, 24]. The most popular T2I models employ classifier-free
guidance [11] to balance prompt compliance and image diversity using a guid-
ance scale hyper-parameter, s. While prompt adherence improves by increasing
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s, image quality deteriorates beyond a certain value. DNP helps ensure prompt
adherence even for lower values of s, thereby maintaining image quality.
Structured Image Conditioning: Various image generation and editing im-
provements have been introduced since the advent of DMs. They range from
finetuning the models for certain tasks to editing the noise at each iteration.
Many methods require users to provide structured conditioned inputs like lay-
outs [15, 18, 32], example images [13, 23, 29], and depth maps [31]. These can be
hard to produce and require considerable user skill or additional computer vision
modules. DNP allows us to control T2I with text alone while allowing it to be
combined with most structured conditioning techniques as well.
Attention-based Methods: These methods attempt to tackle DM errors by
editing attention maps at each diffusion step, changing the cross-attention be-
tween prompt tokens. [3] updates the noise latent with a loss that maximizes
attention to each noun, while [21] first creates a linguistic binding between
prompt attributes and nouns and then maximizes (minimizes) attention IOUs
for mapped (non-mapped) tokens. [7] uses text formatting such as font style, size,
color, and footnotes to allow for creative human input and uses region-specific
guidance to combine the noise corresponding to each token. These methods re-
quire careful fine-tuning of a loss guidance hyper-parameter and can heavily alter
the DM Markov chain, which can create highly saturated and low-quality im-
ages. While the proposed method also forces the DM to use a different Markov
chain, it does not interfere with its intermediate steps through any loss updates.
Text based Methods: These methods try to explore and correct the semantic
failures of the DM text encoder. [16] tries to decouple the text and combine
noise latent later and [6] introduces consistency trees to split the prompt into
noun phrases, for better cross-attention in the text-encoder. These methods fail
to correct those errors which arise not from the text but from the DM itself.
Negative Prompts: Negative prompts [16], are quite effective at removing
unwanted concepts from the synthesized image and have been incorporated into
most T2I models. However, finding a good negative prompt requires trial and
error. Also, the effect of negative prompts varies significantly with prompt and
seed. The proposed method, DNP provides a solution to this.

6 Conclusion

Do diffusion models truly understand negation? In this work, we have hypoth-
esized that the semantic gap between DMs and humans is responsible for the
poor performance of negative prompting. We proposed DNP as a simple yet effec-
tive method for bridging this gap. This consists of sampling a negative diffusion
image Ī, using a novel DNS procedure, and asking the user to translate it into a
natural language negative prompt. This greatly improves the prompt adherence
and quality of the generated images. DNP is universally applicable across diffusion
models and can be combined with other methods. It highlights the difference be-
tween semantic and diffusion negation and leverages this difference to improve
the performance of these models without additional training.
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