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Abstract

Significant effort has been recently devoted to modeling
visual relations. This has mostly addressed the design of
architectures, typically by adding parameters and increas-
ing model complexity. However, visual relation learning is
a long-tailed problem, due to the combinatorial nature of
joint reasoning about groups of objects. Increasing model
complexity is, in general, ill-suited for long-tailed problems
due to their tendency to overfit. In this paper, we explore
an alternative hypothesis, denoted the Devil is in the Tails.
Under this hypothesis, better performance is achieved by
keeping the model simple but improving its ability to cope
with long-tailed distributions. To test this hypothesis, we de-
vise a new approach for training visual relationships mod-
els, which is inspired by state-of-the-art long-tailed recog-
nition literature. This is based on an iterative decoupled
training scheme, denoted Decoupled Training for Devil in
the Tails (DT2). DT2 employs a novel sampling approach,
Alternating Class-Balanced Sampling (ACBS), to capture
the interplay between the long-tailed entity and predicate
distributions of visual relations. Results show that, with an
extremely simple architecture, DT2-ACBS significantly out-
performs much more complex state-of-the-art methods on
scene graph generation tasks. This suggests that the de-
velopment of sophisticated models must be considered in
tandem with the long-tailed nature of the problem.

1. Introduction

Scene graphs provide a compact structured description
of complex scenes and the semantic relationships between
objects/entities. Modeling and learning such visual rela-
tions benefit several high-level Vision-and-Language tasks
such as caption generation [45, 44], visual question an-
swering [16], image retrieval [20, 34], image generation
[19, 24, 33] and robotic manipulation planning [29]. Scene
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Figure 1. The devil is in the tails: Architecture design and learning
process of visual relations need to consider the long-tailed nature
of both entity and predicate class distributions.

graph generation requires the understanding of the loca-
tions and the class associated with the entity as well as
the relationship between a pair of entities. The relation-
ship between a pair of entities is usually formulated as a
< subject − predicate − object > tuple, where subject
and object are two entities. Scene graph generation (SGG)
faces the challenges from both the long-tailed entity recog-
nition problem and visual relation recognition problem.

While long-tailed entity recognition has been addressed
in the literature [28, 1, 5, 21], the imbalance becomes more
prevalent for the SGG tasks, owing to the severe long-tailed
nature of the predicate distribution. Take Figure 1 for ex-
ample. While the class of the subject (“ball”) is popular, the
class of the object (“robot”) and the predicate (“kicking”)
can be infrequent, leading to the rare occurrence of the tu-
ple “robot-kicking-ball”. This shows that even when the
entity class distribution is balanced, the imbalanced pred-
icate class distribution can lead to a more imbalanced tu-
ple distribution. Of course, such imbalance issues can be
exacerbated if both entity classes and predicate classes are
skewed (e.g. “tripod-mounted-on-donkey”). The combina-
tion of long-tailed entity and predicate classes makes SGG



a more challenging problem.
While the long-tailed problem poses a great challenge to

SGG tasks, it has not been well addressed in the SGG liter-
ature. Existing works [48, 43, 3, 32, 49] instead focused on
designing more complex models, primarily by adding archi-
tectural enhancements that increase model size. While this
has enabled encouraging performance under the Recall@k
(R@k) metric, this metric is biased toward the highly popu-
lated classes. This suggests that prior works may be overfit-
ting on popular predicate classes (e.g. on/has), but their per-
formances could degrade on the less frequent classes (e.g.
eating/riding). Such a bias towards the populated classes
is problematic, because predicates lying in the tails often
provide more informative depictions of scene content. The
failure to predict tail classes could lead to a less informative
scene graph , limiting the effectiveness of scene graphs for
intended applications. In this paper, we explore the hypoth-
esis that the Devil is in the tails. Under this hypothesis, vi-
sual relation learning is better addressed by a simple model
of improved ability to cope with long-tailed distributions.

To investigate this hypothesis, we first analyze the distri-
bution of entity and predicate classes in the Visual Genome
dataset. As shown in Figure 2, both distributions are heavily
skewed, but with different magnitude. The imbalance in the
predicate distribution is more severe than that in the entity
distribution. To the best of our knowledge, none of the ex-
isting SGG methods considered the jointly long-tailed dis-
tributions of entity and predicate classes. To address this,
we propose a new approach to visual relationship learning,
based on a simpler architecture than those in the literature
but a more sophisticated training procedure, denoted De-
coupled Training for Devil in the Tails (DT2).

DT2 is a generalization of the decoupled training pro-
cedures that have recently become popular for long-tailed
recognition [21]. It consists of an alternative sampling
scheme that produces distributions balanced for entities
and predicates. This is accompanied by a novel sampling
scheme, Alternating Class-Balanced Sampling (ACBS),
which captures the interplay between the two different long-
tailed distributions through an implementation of learn-
ing without forgetting [26] based on a mechanism that in-
troduces memory between the sampling iterations, using
knowledge distillation. With DT2, we show that a simple ar-
chitecture with 10× fewer parameters significantly outper-
forms prior, and more sophisticated, architectures designed
for SGG, under the mRecall@K metric, which is suited for
measuring the performance of a long-tailed dataset. Abla-
tion studies of different sampling schemes as well as analy-
sis of performance on classes of different popularity further
validate our hypothesis.

Overall, the paper makes three contributions. 1) We de-
vise a simple model architecture with the decoupled train-
ing scheme, namely DT2, suited for the long-tailed SGG

tasks. 2) We propose a novel sampling strategy, Alternat-
ing Class-Balanced Sampling (ACBS), to capture the in-
terplay between different long-tailed distributions of entities
and relations. 3) The combined DT2-ACBS significantly
outperforms state-of-the-art methods of more complex ar-
chitectures on all SGG tasks on the Visual Genome bench-
mark. The code is available on the project website1.

2. Related work
2.1. Scene graph generation

Several works have addressed the generation of scene
graphs for images [46, 42, 47, 14, 38, 41, 48, 43, 25, 9,
3, 32, 17, 49, 7]. Most approaches focus on either so-
phisticated architecture design or contextual feature fusion
strategies, such as message passing and recurrent neural
networks [48, 32], to optimize SGG performance on the
Visual Genome dataset [22] under the Recall@K metric.
While these approaches achieved gains for highly populated
classes, underrepresented classes tend to have much poorer
performance. Recently, [3, 31, 42, 37, 23] started to address
the learning bias induced by the dataset statistics, by using
a more suitable evaluation metric, mRecall@K, which av-
erages recall values across classes. To address the dataset
bias, TDE [31] employed causal inference in the predic-
tion stage , whereas [37] used a pseudo-siamese network to
extract balanced visual features, and PCPL [42] harnessed
implicit correlations among predicate classes and used a
complex graph encoding module consisting of a number of
stacked encoders and attention heads. A concurrent work
[23] introduces confidence-based gating with bi-level data
resampling to mitigate the training bias. These methods
considered, at most, the long-tailed distribution of either
predicates or entities and do not disentangle the gains of
sampling from those of complex architectures. For exam-
ple, [42] proposed a contextual feature generator via graph
encoding with 6 stacked encoders, each with 12 attention
heads and a feed-forward network. We argue that long-
tailed distributions should be considered for both entities
and predicates and show that, when this is done, better re-
sults can be achieved with a much simpler architecture.

2.2. Long-tailed recognition

Prior work addresses the long-tailed issue in 3 directions:
data re-sampling, cost-sensitive loss and transfer learning.

Data resampling [12, 10, 51, 11, 8, 2] is a popular
strategy to oversample tail (underrepresented) classes and
undersample head (populated) classes. Oversampling is
achieved either by duplicating samples or by synthesizing
data [10, 51, 2]. While producing a more uniform train-
ing distribution, recent works [21, 50] argue that this strat-
egy is unsuitable for deep representation learning like CNN.

1http://www.svcl.ucsd.edu/projects/DT2-ACBS



[21] decouples the representation learning from the classi-
fier learning, adopting different sampling strategies in the
two stages, whereas [50] proposes a two-stream model with
a mixed sampling strategy. The proposed method lies in this
direction, since we consider different distributions of entity
and predicate classes, and adopt different sampling strate-
gies for training different model components.

Cost-sensitive losses [6, 5, 1, 27] assign different costs
to the incorrect prediction of different samples, according
to class frequency [5, 1] or difficulty [6, 27]. This is im-
plemented by assigning higher weights or enforcing larger
margins for classes with fewer samples. Weights can be
proportional to inverse class frequency or effective num-
ber [5] and can be estimated by meta-learning [18]. This re-
weighting strategy was recently applied to the scene graph
literature [42] to overcome long-tailed distributions.

Transfer learning methods transfer information from
head to tail classes. [35, 36] learns to predict few-
shot model parameters from many-shot model parameters,
and [28] proposes a meta-memory for knowledge sharing.
[39] leverages a hierarchical classifier to share knowledge
among classes. [40] learn an expert model for each class
popularity, and combine them by knowledge distillation.

3. Formulation and data statistics
In this section, we review the problem of learning visual

relations and discuss its long-tailed nature.

3.1. Definitions

The inference of the visual relationships in a scene
is usually formulated as a three stage process. The ob-
jects/entities in the scene are detected, classified, and the
relationships between each pair of entities, in the form of
predicates, are finally inferred. [20] formulated these stages
with a Scene Graph. Let C and P be the set of entity and
predicate classes, respectively. Each entity e = (eb, ec) ∈ E
is composed by a bounding box eb ∈ R4 and a class label
ec ∈ C. A relation r = (s, p, o) is a three-tuple, connect-
ing a subject s and an object o identities (s, o ∈ E), through
a predicate p ∈ P . For example, person-riding-bike. The
scene graph G = (E,R) of an image I contains a set of
entities E = {ei}mi=1 and a set of relations R = {rj}nj=1

extracted from the image. This can be further decomposed
into a set of bounding boxes B = {ebi}mi=1, a set of class
labels Y = {eci}mi=1, and a set of relations R.

The generation of a scene graph G from an image I is
naturally mapped into the probabilistic model

Pr(G|I) = Pr(B|I)Pr(Y |B, I)Pr(R|B, Y, I), (1)

where Pr(B|I) is a bounding box prediction model,
Pr(Y |B, I) an entity class model and Pr(R|B, Y, I) is a
predicate class model. Joint inference of the three tasks is

Figure 2. Object classes (left) and predicate classes (right) are both
long-tailed distributed in Visual Genome (VG150).

referred to as Scene Graph Detection (SGDet). However,
because bounding box prediction has been widely studied in
object detection [30], it is possible to simply adopt an off-
the-shelf detector. This motivates two other tasks: Predi-
cate classification (PredCls), where both bounding boxes
and entity classes are given, and Scene Graph Classifica-
tion (SGCls), where only bounding boxes are known.

3.2. Long-tailed visual relations

Long-tailed distributions are a staple of the natural
world, where different classes occur with very different
frequencies. For example, while some entity classes (e.g.
chair) occur very frequently, others (e.g donkey) are much
less frequent. Long tails are problematic because, under
standard loss functions and evaluation metrics, they en-
courage machine learning systems to overfit on a few head
classes and ignore a large number of tail classes. Recent
works [28, 5, 50, 21] have shown that sampling techniques
which de-emphasize popular classes, giving more weight to
rare ones, can induce very large recognition gains when dis-
tributions are long-tailed. However, the issue has not been
thoroughly considered in the visual relations literature.

This is somewhat surprising, given the combinatorial de-
pendence of visual relationships on entities and predicates.
Since entities are long-tailed, relationships between pairs of
entities have even more skewed distributions. For example,
because the entity classes “donkey” and “cliff” are less fre-
quent than “chair” and “leg”, the relation “donkey-on-cliff”
is much less frequent than “chair-has-leg”. This, however,
is not the only source of skew, since predicates can be rare
even when associated entity classes are popular, e.g. play-
ing is much less popular than has. Finally, relationships
can be rare even when involving frequent entities and predi-
cates, e.g. the relation “car-has-wheel” is much more likely
than “car-has-camera”. For all these reasons, very long tails
are unavoidable for visual relations. This is quite visible in
the widely used Visual Genome [22] dataset. As shown in
Figure 2, both the distribution of entity and predicate classes
are long-tailed. For entities, the most populated class is 35×
larger than the least populated. For predicates, the former is
12, 000× larger than the latter (5, 000× if the least frequent
predicate class is discarded). Note that this is much larger
than the square of the ratio between entity classes (1, 225)
suggested by the factorial nature of relationships.

The long-tailed problem is exacerbated by the evaluation
protocol, based on the Recall@K (R@K) measure, adopted



in most of the scene graphs literature. This measures the
average percentage of ground truth relation triplets that ap-
pear in the top K predictions and, like any average, is dom-
inated by the most frequent relationship classes. Hence, it
does not penalize solutions that simply ignore infrequent
relationship classes. Since most works, e.g. [32, 7, 3], fo-
cus on designing ever more complex network architectures
to optimize R@K performance, it is unclear whether all
that is being accomplished is stronger overfitting to a few
dominant classes (e.g. “on”). This is undesirable for two
reasons. First, the number of infrequent relations is much
larger than that of dominant relationships. Second, while
dominant relations include many obvious contextual rela-
tionships (e.g.“car-has-wheels”), infrequent ones are poten-
tially more informative (e.g. “monkey-playing-ball”) of the
scene content. In summary, the focus on optimizing R@K
could lead to systems that are only capable of detecting a
few relationships of relatively low information content.

This problem has been recognized in the recent litera-
ture, where some works [3, 31] have started to adopt the
mRecall@K (mR@K) metric, which first averages the re-
call of triplets within the same predicate class and then av-
erages the class recalls over all the predicate classes. While
this is a step in the right direction, it is not sufficient to ac-
count for class imbalance only at the evaluation stage. In-
stead, the learning algorithm should explicitly address this
imbalance. This leads to an alternative hypothesis that we
explore in this work: Is the devil in the tails? Or, in other
words, can a simple model designed explicitly to cope with
the long-tailed nature of visual relations outperform exist-
ing models, which are much more complex but ignore this
property? To investigate this hypothesis, we introduce a so-
lution that uses a model much simpler than recently pro-
posed architectures, but is much more sophisticated in its
use of sampling techniques that target the long-tailed nature
of visual relationship.

4. Method

In this section, we introduce the proposed network archi-
tecture, losses, and the training procedure.

4.1. Notations

For a relation tuple rj = (sj , pj , oj) in image I , pj is
the ground truth predicate class, while sj = (sbj , s

c
j) and

oj = (obj , o
c
j) are the subject and object entities, composed

of its associated bounding box coordinates (e.g. sbj) and
ground truth entity class (e.g. scj). The bounding boxes of
an entity can be either the ground truth coordinates or the
predictions from a detection model, depending on the task
of interest (i.e. SGCls or SGDet). With the bounding boxes,
the corresponding image patch Isj and Ioj for the subject and
object can be cropped from the image I .

In addition, we define ρ as a probability vector at the
output of the softmax function with temperature τ , and its
ith entry is formulated as

ρi(f,W, τ) =
exp (wT

i f/τ)∑
k exp (w

T
k f/τ)

, (2)

where f ∈ Rd is a feature vector, W ∈ Rd×k is the matrix
of k weight parameters wk ∈ Rd.

4.2. Model architecture

Figure 3 summarizes the architecture of the Decoupled
Training for Devil in the Tails (DT2) model. This combines
an entity encoder F , as shown in the right part of Figure 3,
and a predicate classifier H . DT2 takes the bounding box
coordinates sbj , obj [4] and the corresponding cropped im-
age patches Isj and Ioj as input. The entity encoder F is
then applied to both Isj and Ioj , to extract a pair of subject-

object feature vectors f{a,s}s , f
{a,s}
o that represent both the

appearance and semantics of entities sj and oj . These are
then concatenated with an embedding of the bounding box
coordinates sbj and obj , and fed to a predicate classifier H .
Implementation details of the entity encoder and the predi-
cate classifier are elaborated below.

Entity encoder F first maps image patch Ie of entity e
through a feature extractor, implemented with the first three
convolutional blocks of a pretrained ResNet101 [13]. We
use a faster R-CNN pre-trained for object detection on Vi-
sual Genome under regular sampling (all images are sam-
pled uniformly). The resulting feature vector fe is then
mapped to two feature vectors, fse and fae , that encode se-
mantics and appearance information respectively, through
two different branches sharing identical architecture. The
semantic branch F s(·; θ) of parameter θ is implemented
with a stack of convolution layers (the last convolutional
block of ResNet101). Its output is then fed to a softmax
layer that predicts the probability ēc ∈ [0, 1]C of the class
of the entity e, i.e.

ēc = ρ(F s(fe; θ),W
e, τ = 1) , (3)

where We is the matrix of the entity classifier weights and
τ of ρ in (2) is set to 1. The one-hot encoding êc can be
generated by taking the argmax of ēc, which is then mapped
into a semantic feature vector fse ∈ R128 with a single fully
connected layer.

While the semantic branch would be, in principle, suf-
ficient to convey the entity identity to the remainder of the
network, this does not suffice to infer visual relationships.
For example, the detection of the “people” and “bike” enti-
ties in Figure 3 is not enough to infer whether the relation-
ship is “person-standing by-bike” or “person-riding-bike”.
This problem is addressed by introducing the appearance
branch F a(·;ϕ) of parameter ϕ, which outputs a feature
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Figure 3. The model architecture of DT2 is composed of an entity encoder F (right) and a predicate classifier H .

vector fae ∈ R128 with no pre-defined semantics, simply
encoding entity appearance. Finally, the feature vectors fae
and fse are concatenated into a vector f{a,s}e ∈ R256 that
represents both the appearance and semantics of entity e.

Predicate classifier takes the subject f{a,s}s and object
f
{a,s}
o feature vectors as input. These vectors are then con-

catenated with an embedding of subject sb and object ob

bounding boxes produced by a fully-connected layer, to cre-
ate a joint encoding f{a,s,b}{s,o} ∈ R520 of the semantics, ap-
pearance, and location of the subject-object patches Is and
Io. The predicate classifier H is implemented with a small
feature extractorH(., ψ), consisting of three layers that per-
form dimension reduction. The input f{a,s,b}{s,o} ∈ R520 is first
transformed into a 256-dimension vector with a fully con-
nected layer, followed by a batch normalization and a ReLU
layer, the output of which is finally passed through a fully
connected layer with a tanh non-linearity, to produce a final
feature vector fs,o ∈ R128. This is fed to a softmax layer to
produce the probability of the predicate class

p̄ = ρ(fs,o,W
p, τ = 1) (4)

where Wp is the weight matrix of the predicate classifier.

4.3. Training

DT2 is trained with standard cross-entropy losses tar-
geted on entity and predicate classification. The former is
defined as

Lent =
1

n

n∑
i=1

1

|Ei|
∑

ek∈Ei

Lce(e
c
k, ē

c
k) (5)

where Lce denotes the cross-entropy loss, ēck is the output
probability prediction of (3) and eck is the ground truth one-
hot code of the kth entity in the set Ei from image Ii. This
is complemented by a predicate classification loss

Lpred =
1

n

n∑
i=1

1

|Ri|
∑

rk=(sk,pk,ok)∈Ri

Lce(pk, p̄k) (6)

where p̄k is the output probability of (4) and pk the ground
truth one-hot code for the kth predicate in the set Ri of vi-
sual relations in image Ii. Both (5) and (6) are important to
guarantee that the network can learn from both entities and
predicate relationships.

4.4. Sampling strategies

While encapsulating both semantics and appearance in-
formation, the proposed training loss in Sec. 4.3 requires
a complementary sampling strategy tailored for long-tailed
data. This long-tailed problem has been studied mostly in
the object recognition literature, where an image patch is
fed to a feature extractor with the parameter φ and the soft-
max layer ρ of (2) with weight matrix W. A popular train-
ing strategy is to use different sampling strategies to train
the two network components [21]. The intuition is that, be-
cause the bulk of the network parameters are in the feature
extractor (φ), this should be learned with the largest possi-
ble amount of data. Hence, the entire network is first trained
with Standard Random Sampling (SRS), which samples
images uniformly, independent of their class labels.

While this produces a good feature extractor, the result-
ing classifier usually overfits to the head classes, which are
represented by many more images and have a larger weight
on the cost function. The problem is addressed by fine-
tuning the network on a balanced distribution, obtained with
Class Balanced Sampling (CBS). This consists of sam-
pling uniformly over classes, rather than images, and guar-
antees that all classes are represented with equal frequen-
cies. However, because images from tail classes are resam-
pled more frequently than those of head classes, it carries
some risk of overfitting to the former. To avoid overfit-
ting, the fine-tuning is restricted to the weights W of the
softmax layer. In summary, the network is trained in two
stages. First, the parameters φ and W are jointly learned
with SRS. Second, the feature extractor (φ) is fixed and the
softmax layer parameters W are relearned with CBS.

4.5. Sampling for visual relationships

Similar to long-tailed object recognition, it is sensible to
train a model for visual relations in two stages. In the first
stage, the goal is to learn the parameters θ, ϕ, ψ of the fea-
ture extractors (see Sec. 4.2), which are the overwhelming
majority of the network parameters. As in object recogni-
tion, the network should be trained with SRS. In the sec-
ond stage, the goal is to fine-tune the softmax parameters
We and Wp to avoid overfitting to head classes. However,
unlike long-tailed object recognition, Figure 2 shows that
predicates and entities can have very different distributions,
which makes the learning of long-tailed visual relations a
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distinct problem. This indicates that two class-balanced
sampling strategies are required to accommodate the dis-
tribution difference between predicate and entity classes.

A straightforward solution is to introduce a 2-step it-
erative training procedure, namely entity-optimization step
(E-step) and predicate-optimization step (P-step), to opti-
mize the weight of We and Wp respectively. In E-step,
images are sampled from a distribution Pe that is uniform
with respect to entity classes, which is denoted as Entity-
CBS. While in P-step, they are sampled from a distribution
Pp uniform with respect to predicate classes, denoted as
Predicate-CBS. However, since the uniform sampling of Pp

is not class-balanced for entity classes, P-step would lead to
the overfitting of the entity classification parameters We.

To address this problem, we propose a novel sampling
strategy, Alternating CBS (ACBS), tailored for long-tailed
visual relations. ACBS contains a memory mechanism to
maintain the entity predictions of the P-step, making sure
that what was learned is not forgotten in the E-step. It is
implemented with distillation [15] between the P-step and
E-step and an auxiliary teacher entity classifier of weight
matrix Wt. The teacher entity classifier is inserted in par-
allel with the entity classifier of weight matrix We in (3),
which is its student, and produces a second set of entity pre-
diction probabilities as

ēt = ρ(F s(fe; θ),W
t, τ = 1). (7)

With the introduction of the teacher entity classifier, we
rewrite (5) intoLstu

ent andLtea
ent, where the former operates on

ēc of (3) and the latter operates on ēt. Furthermore, to dis-
till knowledge from the teacher entity classifier, a Kullback-
Leibler divergence (KL) loss (Lkd) is defined as

KL(ρ(F s(fe; θ),W
e, τ = τs)||ρ(F s(fe; θ),W

t, τ = τs)),
(8)

where the two inputs to Lkd are the smooth version of (3)
and (7) with temperature τs.

In summary, the P-step updates parameters Wp of the
predicate classifier and Wt of the teacher with (6) and
Ltea
ent respectively, while the student parameters We are kept

Algorithm 1: Training procedure of ACBS
Input: Training dataset D, predicate distribution
Pp, entity distribution Pe, ACBS hyperparameters
(α, β, τs), and model parameters (θ, ϕ, ψ).

Output: Model parameters (Wp, We).
while Not convergence do

// P-Step
Dp ← BalancedSample(D, Pp);
while batch in Dp do

Ltotal ← Lpred (6) + βLtea
ent (5);

Minimize Ltotal with respect to (Wp,Wt)
end
// E-Step
De ← BalancedSample(D, Pe);
while batch in De do

Ltotal ← Lstu
ent (5) + αLkd (8);

Minimize Ltotal with respect to We

end
end

fixed. In the E-step, Wp and Wt (teacher) are kept fixed,
and We (student) is optimized with Lstu

ent and (8). This im-
plements learning without forgetting [26] between the two
steps, encouraging the student classifier to mimic the pre-
dictions of the teacher classifier, and enabling the network
to learn the new parameters for one distribution, e.g. We,
without forgetting the one, e.g. Wt, previously learned for
the other. The training procedure is detailed in Algorithm 1.

5. Experiments
In this section, several experiments are performed to val-

idate the effectiveness of DT2-ACBS.

5.1. Dataset

Visual Genome (VG) [22] is composed of 108k images
across 75k object categories and 37k predicate categories,
but 92% of the predicates have less than 10 instances. Fol-
lowing prior works, we use the original splits of the popu-
lar subset (i.e. VG150) for training and evaluation. It con-
tains the most frequent 150 object classes and 50 predicate
classes. The distribution remains highly long-tailed. To per-
form balanced sampling during training, predicate classes
with less than 5 instances, e.g. “flying in,” are ignored.

5.2. Comparison to SOTA

To validate our hypothesis, we compare DT2-ACBS with
the state-of-the-art methods on PredCls, SGCls and SGDet
task on the popular subset VG150 of VG [22], under the
mRecall@K metric. As shown in Table 1, compared base-
lines include 1) simple frequency-based method [48], 2)
sophisticated architecture design for contextual represen-
tation learning [41, 3, 32, 46] and 3) recent works that



Table 1. The result (mRecall@K) of SGG tasks (PredCls, SGCls, SGDet) compared to SOTA in scene graphs. Results for other methods
are reported from the corresponding paper in general. † denotes our reproduced model with ResNet101-FPN backbone.

Predicate Classification Scene Graph Classification Scene Graph Detection
Method mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

IMP+ [41] - 9.8 10.5 - 5.8 6.0 - 3.8 4.4
FREQ [48] 8.3 13.0 16.0 5.1 7.2 8.5 4.5 6.1 7.1

MOTIFS [48] 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
MOTIFS [48]† 13.2 16.3 17.5 7.1 8.8 9.3 4.9 6.7 8.2

KERN [3] - 17.7 19.2 - 9.4 10.0 - 6.4 7.3
VCTree [32] 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
GBNet [46] - 22.1 24.0 - 12.7 13.4 - 7.1 8.5

TDE-MOTIFS-SUM [31] 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8
TDE-MOTIFS-SUM [31]† 17.9 24.8 28.6 9.6 13.0 14.7 5.6 7.7 9.1
TDE-VCTree-SUM [31] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1
TDE-VCTree-GATE [31] 17.2 23.3 26.6 8.9 11.8 13.4 6.3 8.6 10.3

PCPL [42] - 35.2 37.8 - 18.6 19.6 - 9.5 11.7
DT2-ACBS (ours) 27.4 35.9 39.7 18.7 24.8 27.5 16.7 22.0 24.4

Table 2. mR@100 on SGG tasks for head, middle, tail classes. † denotes our reproduced models with ResNet101-FPN backbone.
Predicate Classification Scene Graph Classification Scene Graph Detection

Method Head (16) Middle (17) Tail (17) Head (16) Middle (17) Tail (17) Head (16) Middle (17) Tail (17)
MOTIFS [48]† 42.3 9.8 0.6 24.6 4.0 0.1 20.2 4.6 0.4

TDE-MOTIFS-SUM [31]† 44.9 35.8 6.1 25.6 15.8 3.3 22.2 5.6 0.1
DT2-ACBS (ours) 35.1 45.2 38.6 24.6 29.1 28.6 22.3 26.7 24.0

Figure 5. Comparisons of per class Recall@100 on SGCls. Classes
are sorted in decreasing order of the number of samples.

tackle the long-tailed bias of predicate classes [31, 42]. Sev-
eral observations can be made. First, DT2-ACBS outper-
forms all baselines in the first two groups by a large mar-
gin (mR@100 gain larger than 15.7%) on the PredCls task,
where entity bounding boxes and categories are given. The
baselines in the third group [31, 42], which address the
long-tailed bias of the predicate distribution, are similar in
spirit to DT2-ACBS. However, the latter relies on a simpler
model design and a more sophisticated decoupled training
scheme to overcome overfitting. This enables a 1.9% im-
provement on mR@100 (5% relative improvement), show-
ing the efficacy of the proposed sampling mechanism for
tackling the long-tailed problem in predicates distribution.

Next, when predicting both predicate and entity class
given the ground truth bounding boxes (SGCls task),
DT2-ACBS outperforms all existing methods by a larger
mR@100 margin (1.9% on PredCls vs 7.9% on SGCls,
equivalently relative improvement of 5% in PredCls vs 40%
in SGCls). This significant improvement in SGCls perfor-

mance can be ascribed to the decoupled training of ACBS,
which better captures the interplay between the different
distributions of entities and predicates.

Finally, we also ran DT2-ACBS on proposal boxes
generated by a pre-trained Faster-RCNN for the SGDet
task.Table 1 shows that DT2-ACBS outperforms exist-
ing methods by a significantly larger mR@100 margin of
12.7% (> 100% relative improvement) on the SGDet task.

Class-wise performance analysis: To study the perfor-
mance of classes with different popularity, we sort the 50
relation classes by their frequencies and divide them into 3
equal parts, head (16), middle (17) and tail (17). Table 2
presents the mR@100 performance on these partitions for
each SGG task. As observed in prior long-tailed recogni-
tion work [28, 21], a performance drop in head classes is
hard to avoid while improving tail class performance. The
goal, instead, is to achieve the best balance among all the
classes, which DT2-ACBS clearly does with notable im-
provements in the middle and tail classes. It should also
be noted that the drop in head performance can be deceiv-
ing, due to dataset construction problems like “wearing”
and “wears” appearing as two different relationship classes.
Most importantly, many VG150 tail categories (e.g. “stand-
ing on”, “sitting on”) are fine-grained versions of a head
category (“on”). Some of the degradation in head class per-
formance is just due to the predicates being pushed to the
fine-grained classes, which is more informative. We notice
that one of the high-frequency predicate classes On has a
low recall value (Figure 5) and observe that DT2-ACBS of-
ten instead predicts its fine-grained sub-categories, such as
standing on, sitting on, mounted on. In particular, there are



building-has-window
woman-wearing-jacket

woman-walking on-sidewalk

boy-wearing-sneaker
fence-behind-boy
bag-against-fence
boy-wearing-shirt

Figure 6. Qualitative results of PredCls (left) and SGCls (right). In each sub-figure, colors of bounding boxes in the image (left) are
corresponding to the entities in the triplets (upper-right) with the background color green/orange for correct/incorrect predicate predictions.
In the generated graphs (lower-right), correct/incorrect predictions of entities and predicates are shown in purple/blue and green/orange
respectively, with the ground truth noted in the bracket (best viewed in color). More examples are shown in the supplemental.

Table 3. Ablations on different sampling strategies for SGCls.
Method mR@20 mR@50 mR@100
Single Stage-SRS 6.4 9.6 11.2
Single Stage-Indep. CBS 8.5 11.2 12.4
DT2-Predicate-CBS 10.0 13.0 14.3
DT2-Indep. CBS 17.3 23.9 26.7
DT2-ACBS (ours) 18.7 24.8 27.5

41, 620 ground truth instances of On predicate in the test set,
and DT2-ACBS predicts On-subcategories 14, 317 times on
PredCls, which constitutes 34% incorrect predictions as per
the metric. Overall, DT2-ACBS performs significantly bet-
ter in middle and tail classes on SGG tasks, and performs
comparably on head classes for SGCls and SGDet, reach-
ing the best balance across all the classes.

5.3. Ablations on sampling strategies

SGCls performance is affected by the intertwined entity
and predicate distributions. In this section, we conduct abla-
tion studies in Table 3 on 1) single-stage vs two-stage train-
ing and 2) different sampling schemes. The first half of
the table shows the performances of single-stage training,
where the representation and the classifier are learned to-
gether. This clearly under-performs the two-stage training,
which is listed in the second half of the table, where we
compare different sampling strategies in the second stage
of DT2. For the predicate classifier, it can be trained based
on either SRS or class-balanced sampling for predicates
(Predicate-CBS). Since each relation comes with a subject
and an object, it is possible to train the entity classifier with
respect to Predicate-CBS, indicating the entity classifier can
be trained based on SRS, Predicate-CBS or class-balanced
sampling for entities (Entity-CBS). Note that the predicate
classifier can not be trained with Entity-CBS, since an en-
tity does not always belong to a visual relation tuple. From
the second half of the table, we find that considering the dis-
tribution differences in predicates and entities is important,
because DT2-Predicate CBS (i.e. Predicate-CBS for both
entity and predicate classifier) does not perform as well as
DT2-Indep. CBS (i.e. Entity-CBS for the entity classifier
and Predicate-CBS for the predicate classifier). The obser-

vation that DT2-Indep. CBS already performs better than
existing methods (Table 1) supports our claim that visual
relations can be effectively modeled with a simple architec-
ture if the long-tailed aspect of the problem is considered.
Nevertheless, the proposed ACBS further improves the SG-
Cls performance by distilling the knowledge between P-step
and E-step (see Algorithm 1).

5.4. Qualitative results

Figure 6 presents qualitative results of DT2-ACBS. In
PredCls task, DT2-ACBS can correctly predict populated
predicate classes (has & wearing) as well as non-populated
predicate classes (walking on). Not only robust to long-
tailed predicate classes, DT2-ACBS is also able to classify
entities ranging from more populated classes (boy) to tail
classes (sneaker). We can observe that while the predicted
predicates can be different from the ground truth, the rela-
tion can still be reasonable (e.g. a subclass or a synonym
of the ground truth). For example, the predicted predicate
“walking on” is actually a subclass of the ground truth pred-
icate “on”. These examples show that DT2-ACBS is able to
predict more fine-grained predicates in tail classes and pro-
vide more exciting descriptions of the scene.

6. Conclusions
Learning visual relations is inherently a long-tailed prob-

lem. Existing approaches have mostly proposed complex
models to learn visual relations. However, complex mod-
els are ill-suited for long-tailed problems, due to their ten-
dency to overfit. In this paper, we consider the unique-
ness of visual relations, where entities and relations have
skewed distributions. We propose a simple model, namely
DT2, along with an alternating sampling strategy (ACBS)
to tackle the long-tailed visual relation problem. Exten-
sive experiments on the benchmark VG150 dataset show
that DT2-ACBS significantly outperforms the state-of-the-
art methods of more complex architectures.
Acknowledgements This work was funded by NSF awards
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