Black-Box Test-Time Shape REFINEment
for Single View 3D Reconstruction
Supplementary

1. Additional Notes on REFINE

1.1. Extended Figures and Tables

Several figures and tables are given in this supplemen-
tary to complement the main paper. Figure | illustrates that
although OccNet [22], Pix2Mesh [29], and AtlasNet [11]
produce very different failure cases and artifacts, REFINE
improves the both the input image consistency and 3D ac-
curacy of all methods. For detailed per-class results on
ShapeNet, please refer to Table 1. For per-class results
on RerenderedShapeNet, refer to Tables 2 and 3. Figures
10 and 11 provides performance measurements visualized
as a heatmap for 3D-ODDS across the class/angle and do-
main/angle factors. Figures 21 and 22 plots reconstruc-
tion accuracies on a per-object basis, for all objects in 3D-
ODDS.

Figures 12, 13, 14, and 15 show more REFINE examples
on real-world images (Pix3D and 3D-ODDS). Figure 16 is
on RerenderedShapeNet, while Figure 17 is on ShapeNet.
All these figures use an OccNet to reconstruct the origi-
nal mesh. For REFINEment examples using the AtlasNet,
Pix2Mesh, and Pix2Vox reconstruction methods, please re-
fer to Figures 18, 19, and 20 respectively.

1.2. Scope, Limitations, and Future Work

Test-time shape refinement explores whether or not re-
constructions can be improved by the use of additional aux-
iliary test-time information. In the work of [23], this was
performed by optimizing the parameters of a SVR network
given a coarsely reconstructed mesh, object silhouette, and
pose. We also follow this input setting, which allows us
to focus on studying REFINE independently without con-
founding factors. Research in automatic image segmenta-
tion [1,12,24,35] and pose estimation [16,27,31] is beyond
the scope of this paper, and advancement in those tasks is
left for future research. Additionally, we believe that the
REFINE paradigm and 3D-ODDS dataset provide an ex-
cellent foundation for future improvements in test-time re-
finement and generalizable reconstruction. For example,
it may be worthwhile to explore more complex architec-
tures, high level learned priors, topological modifications,
and generative/adversarial formulations. They may lead to
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Figure 1. An airplane reconstructed by three different methods
[11,22,29]. Since the methods differ greatly, they exhibit very dif-
ferent failure cases and artifacts. Nevertheless, REFINE improves
all reconstructions.
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more powerful refinements, but also significantly increased
challenges in avoiding degenerate solutions.

1.3. Potential on Societal Impact

REFINE is a relatively lightweight instance-based, class-
agnostic postprocessing step. It does not rely on any dataset
to train on; its effectiveness is due its formulation, designed
architecture, and proposed loss functions. Thus, we do not
anticipate immediate negative environmental, fairness, or
privacy concerns directly resulting from REFINE. However,
it requires a black-box separate single view reconstruction
network S which reconstructs the original meshes. In real
world deployments we encourage understanding the design
and training procedure of S, especially its potential biases
and security/privacy concerns which may be problematic in
some neural networks [28, 30].

1.4. REFINE Architecture

The feature map encoder is based on the first two con-
volutional layers of ResNet-18 [13]. The dimension of all 8
graph convolution layers used is 128, and each is followed
by a ReLU nonlinearity. Vg, is predicted with a single fully
connected layer, while Voo s is predicted with fully con-
nected layers of sizes 32, 16, and 1 (a ReLU follows each
except for the last, which uses sigmoid). The feature map
encoder is initialized using ImageNet [5] classification pre-
trained weights, while all other weights are randomly ini-



(a) OTURN Domain
(In the lab, turntable & DSLR Camera to create 3D meshes.)

(b) OOWL Domain
(In the lab, flying drone camera)

(c) OWILD Domain

(Real indoor/outdoor locations, smartphone camera)

Figure 2. The data collection procedure differs for each domain of the 3D-ODDS dataset. OTURN uses a high resolution DSLR camera
in a controlled turntable setup, which was used to generate 3D meshes using structure-from-motion. OOWL is captured using a drone
camera, mid-flight. OWILD depicts objects in diverse indoor/outdoor locations, captured using smartphone cameras.
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Figure 3. A venn diagram of objects that can be found in the 3D-
ODDS dataset’s three domains: OTURN, OOWL, and OWILD.
232 objects can be found simultaneously in all three domains.

tialized; no weights are frozen during optimization. We use
the PyTorch3D differentiable renderer [18], which is im-
plemented based on [19]. All hyperparameters were tuned
with a small portion of RerenderedShapeNet, disjoint from
the test set.

1.5. Loss Functions

The weights chosen for the loss functions are Ag;; = 10,
Arsym = 80, Avsym = 20, Agymp = 0.0005 Ap;s = 100,
Ane = 10, and Ar, = 10. We found that this configura-
tion works well overall in practice; however, they are not
overly sensitive and changing them by +25% didn’t change
results significantly. Beyond this range, we observed that
these weights operate intuitively as one would expect (as il-
lustrated in Figure 9 of the main paper). In general, they
are not difficult to tune and practitioners can modify them
accordingly with their use case. For example, one might in-
crease the weight of Ay, if they are confident that in their
use case, input reconstructions are already of relatively high
quality. This would effectively apply a stronger prior to-
wards minimizing the displacements’ magnitudes. Alterna-
tively, if only symmetric objects are considered Asy,,p can
be increased.

Additionally for the symmetry losses, there are methods
to predict planes of object symmetry [8, 34] but we found
them to be unnecessary since most reconstruction methods

output semantically aligned meshes for objects of the same
class. In general, the objects are aligned so that Z is the ver-
tical plane with 77 = [0, 0, 1]T. We adopt this convention in
all our experiments. For the image rendering based symme-
try loss, we also tried to use differentiably rendered normal
maps and depth maps instead of only silhouettes. However,
we found that this increased the computational complexity,
and resulted in nearly the same performance.

1.6. Time Efficiency

Ideally, test-time shape refinement postprocessing
should support any mesh and be fast. REFINE intrinsi-
cally satisfies the first requisite, since it is black-box, class-
agnostic, and allows variable number of vertices per mesh.
Optimization from scratch converges in relatively few it-
erations, approximately 400 (i.e. 400 forward and back-
ward passes). This requires about 90 seconds on a GTX
1080Ti GPU. Moreover, because instances are treated inde-
pendently, the refinement is trivially parallelizable. Since 4
instances fit on a GPU, a two GPU server trivially achieves
a per-instance refinement time of 90/(4 * 2) ~ 11 seconds,
which is effective in terms of the second requisite.

2. Dataset Additional Details

Three new datasets are proposed in this paper: 3D-
ODDS, RerenderedShapeNet, and ShapeNetAsym. All
datasets will be publicly released upon publication. More
details about these datasets are provided as follows.

2.1. 3D-ODDS

The proposed 3D-ODDS dataset contains multiview ob-
jects in 3 domains, as illustrated in Figure 2. The first
domain is the contribution of this paper, OTURN, which
is taken in the lab using a turntable and DSLR camera.
331 objects were imaged with dense pose coverage; 3 el-
evation angles and 72 azumuth angles (5° increments), for
331x3x72 = 71,496 total images which are of high resolu-
tion with simple backgrounds. All the OTURN images for
an example airplane object is provided in Figure 9. These
images were then used to reconstruct a mesh for each ob-
ject, using structure-from-motion software [21]. The sec-
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Figure 4. Comparisons between ShapeNet renderings from Choy
Etal. [3] and RerenderedShapeNet. Both use the same 3D models,
but a domain gap is intentionally created through viewpoint, light-
ing, and rasterization implementation differences in the rendering
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Figure 5. Example images from the ShapeNetAsym dataset.

ond domain is OOWL [14], with multiview (45° azimuth
increments) images of objects collected in the lab using a
drone camera. These images have a green background and
can be blurry, due to camera shake from flight. The third do-
main is OWILD [15], which contains multiview images of
objects (also 45° azimuth increments) in diverse real world
indoor/outdoor locations. These images are taken with a
smartphone camera. A venn diagram of the objects found
in these domains is given in Figure 3; 232 objects can be
simultaneously found in OTURN, OOWL, and OWILD.
More example objects in the 3D-ODDS dataset are shown
in Figures 7 and 8.

Note that some imperfections are present in the mesh
scans, as a natural consequence of real-world 3D data col-
lection. This can be due to absence of texture or difficult
material reflectance properties. To account for this, we
manually annotated each mesh’s quality; there are 101 ex-
cellent quality meshes, 198 high quality meshes, and 32
low quality meshes. High quality meshes are character-
ized by overall geometrical resemblance to the true shape;
some small superficial noise artifacts may exist. In all ex-
periments, we only considered objects found in OTURN,
OOWL, and OWILD with excellent/high quality meshes;
this subset consists of 212 objects.

2.2. RerenderedShapeNet and ShapeNetAsym

RerenderedShapeNet matches the ShapeNet [2] models
in the test set given by [3]. However, a small domain
gap is intentionally induced compared to the images from
[3] through differences in the rendering process. This al-
lows us to measure the robustness of SVR methods to do-
main gaps of various sizes between training on [3] and in-
ference (on RerenderedShapeNet, ShapeNetAysm, Pix3D,
or 3D-ODDS). In particular, [3] is rendered textured with
Blender’s Eevee engine [4] at distance 0.8, uses 2 sun light
sources 180 degrees rotated from one another, with specu-

lar and diffuse shading disabled. Meanwhile, Rerendered-
ShapeNet is rendered textureless with PyTorch3D’s Hard
Phong shading [18] at distance 1, uses a point light source
at (0,5, —10), with ambient intensity 0.3, specular intensity
0.2, and diffuse intensity 0.3. Images in both have an el-
evation of 40° and randomly samples azimuths uniformly.
An illustration of differences between RerenderedShapeNet
and renderings from [3] is shown in Figure 4. In total,
RerenderedShapeNet contains 8629 images and meshes.

We also introduced an asymmetric subset of Rerendered-
ShapeNet called ShapeNetAsym containing 1259 images
and meshes. The meshes are all asymmetrical, in the sense
that each mesh has a symmetry loss Lrgy, < 0.01 for
AsymB = 1 and 0, = 1. Some examples from ShapeNe-
tAsym can be found in Figure 5.

3. Evaluation Details

3.1. Analysis of Variance Results

Analysis of Variance (ANOVA) [7] is a commonly used
statistical model and hypothesis testing framework for split-
ting observed variability into systemic factors and random
error. In particular, it can be used to model the influence of
categorical independent variables (i.e. “factors”) on a con-
tinuous dependent variable, to check if they are statistically
significant. Due to its hierarchical structure, 3D-ODDS has
3 factors: class (14 levels, one for each class), domain (3
levels in OTURN, OOWL, OWILD) and pose (8 levels from
45° viewpoint azimuth increments). This suggests a 3-way
ANOVA with blocked design, to account for object-based
variability and dependencies (i.e. each object comprises a
block). Our dependent variable in this case is F-Score af-
ter REFINEment of an OccNet. All factors, pairwise in-
teraction effects, and triplet interaction effects were found
to be statistically significant at the = 0.05 level. total
variability was decomposed into 13% class, 2% pose, 1%
domain, 19% object instance. Interaction effects between
(class,domain), (class, angle), (domain, angle), and (class,
domain, angle) were found to be 7.6% , 6.8% , 0.3%, and
2.5% respectively, for 17.2% in total attributed to interac-
tion effects between the factors.

Note that ANOVA has several assumptions. The depen-
dent variable should be additively influenced, and ideally
errors should be independent, homoscedastic, and Gaussian
(though ANOVA is considered relatively robust to some de-
partures [10,20], due to the central limit theorem). In light
of this, we suggest viewing these ANOVA results as a sim-
ple summary heuristic useful for gaining further intuition
and insight into 3D-ODDS, rather than dogma.

3.2. Metrics

We detail the metrics used in the main paper below.
For Pix3D, we follow the practice of [23] and exclude im-
ages where the object is truncated resulting in 5325 test in-
stances. The meshes used in this work have approximately
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Figure 6. A 2D illustration of why a surface-based coarsely vox-
elized IoU metric (top) can be inaccurate, compared to the stan-
dard volumetric IoU (bottom). Highlighted in yellow are the inter-
sections of the green and blue ellipse with major axis of length 1.
Note that the surface-based voxelized IoU heavily underrepresents
the intersection-based similarity of the two shapes compared to the
volume based approach.

1500 vertices, although REFINE can handle much larger
meshes (the only limitation being GPU memory).

The Earth Mover Distance (EMD) measures distance
between point clouds S1, S5 sampled from two meshes, by
solving the assignment optimization problem given by

demp(St, S2) = mln ZHSJ— )2, (D)

where ¢ is an optimal bijection. Because exactly computing
EMD is too expensive, we utilize the approximation given
by [6]. Like [23], we sample 2048 points from the recon-
structed mesh and target mesh, scaled so it fits in a sphere
of radius 1. For this metric, lower is better.

Chamfer-/; Distance (CD-/5) is a widely used metric
in the 3D literature [0, | 1,22,29]. It computes the average
nearest neighbor distance between points sampled from two
meshes. Given these two sampled point clouds S, So, their
Chamfer-l; distance is

> min[p=qll3+ > min [lp—ql3.
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Just like EMD, we follow [23] and sample 2048 points from
the reconstructed mesh and target mesh, scaled so it fits in a
sphere of radius 1. For this metric, lower is better.

F-score is formulated as the harmonic mean between
precision and recall at a distance threshold between two
shapes. Precision involves the number of points on the re-
construction which lie a certain distance to ground truth;
recall measures completeness by the number of points on
the ground truth which lie within a certain distance to the
reconstruction. Like [23], we set this distance threshold to
be 0.05 and sample 10000 points after rescaling to a sphere
of radius 1. For more details, please refer to [26]. For this
metric, higher is better.

Volumetric IoU is a standard metric [26] computed by
the volume of two meshes’ union divided by the volume of
their intersection. Like [22], we obtain an unbiased estimate
by randomly sampling 100k points in the bounding volume

dep-1,(51,52) =

and checking if points are inside the meshes (scaled to ra-
dius 1). A higher score is better. Non-watertight meshes
were made watertight with ManifoldPlus [17]. Note that
MeshSDF [23] reports scores for their non-standard version
of the 3D IoU which only accounts for coarsely 30 x 30 x 30
voxelized 3D surface, not internal volume. As this can be
highly misleading (see Figure 6), we instead use the con-
ventional definition of 3D IoU in all experiments.

3.3. Use of Existing Assets

The following code/dataset assets were used to conduct
experiments for this paper.

* Occupancy Networks [22]. Used under the MIT Li-
cense, copyright 2019 Lars Mescheder, Michael Oech-
sle, Michael Niemeyer, Andreas Geiger, Sebastian
Nowozin. Commit 406f794. https://github

.com/autonomousvision/occupancy._net
works.

* Pix2Mesh [29]. Used under the Apache License 2.0.
Commit 7c5a7al. https://github.com/nyw
angl6/Pixel2Mesh.

* Pix2Vox [32]. Used under the MIT License, copyright
2018 Haozhe Xie. Commit f1b8282. https://gi
thub.com/hzxie/Pix2Vox.

e AtlasNet [|1]. Used under the MIT License, copyright
2019 ThibaultGROUEIX. Commit 22a0504. https:
//github.com/ThibaultGROUEIX/AtlasNe
t.

e Mesh R-CNN [9]. Used under a BSD License, copy-
right Facebook, Inc. and its affiliates. Commit
d582649. https://github.com/facebookr
esearch/meshrcnn.

* OOWL [14]. Obtained explicit permission from au-
thors to use in 3D-ODDS. http://www.svcl.u
csd.edu/projects/O0OWL/CVPR2019_adver
sarial.htmlf#dataset.

e OWILD (i.e. ObjectP]) [15]. Obtained explicit per-
mission from authors to use in 3D-ODDS. http:
//www.svcl.ucsd.edu/projects/O0OWL/
CVPR2019_PIE.html#dataset.

e ShapeNet [2]. https://shapenet.org/.
e Pix3d [25]. http://pix3d.csail.mit.edu/.
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Figure 7. Additional example images and mesh for objects in the Airplane class of 3D-ODDS.



Figure 8. Additional example images and mesh for objects in 3D-ODDS.
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Figure 9. All 216 images for an airplane object in the OTURN domain of 3D-ODDS. There are 72 azimuth angles (increments of 5°) for
3 elevation angles.



0° 45° 90° 135° 180° 225° 270° 315° All
Airplane 38.4 - 45.5 (18.1 > 15.0) 385 - 46,6 (17.9 - 14.1) 41.2 5538 (187 > 15.6) 37.5 467 (17.3 - 13.3) 37.6 - 48.0 (20.6 - 19.6) 39.7 - 48.5 (20.3 - 12.6) 38.1 - 50.0 (20.6 - 15.9) 382473 (189 > 14.1) 38.7 - 483 (18.9 > 15.2)
Boat 250339 (146 12.9) 4195461 (186 15.0) 415 491 (199 - 153) 36.1 - 45.0 (17.0 - 16.0) 224302 (116 12.4) 36.7 - 43.4 (213 5 17.1) 38.7 486 (223 - 15.7) 365 - 435 (189 - 12.4) 34.9 - 425 (194 - 15.9)
Bottle 59.0 5716 (18.3 > 88) 581701 (256 = 17.1) 607 732 (14.4 - 13.9) 56,6 - 744 (23.0 - 14.3) 598 - 75.7 (19.4 - 145) 60.0 - 74.6 (205 - 12.5) 560716 (21.3-162) 59.0 701 (16.0 - 13.9) 587727 (19.6 - 138)
Bowl 405 - 46.4 (14.0 » 13.9) 400 - 465 (13.7 » 12.2) 408 - 480 (13.1 » 12.2) 390 - 43.3 (135 - 12.7) 368 - 42,0 (13.0 » 135) 386 - 43.7 (14.2 - 13.8) 388 - 460 (11.6 - 12.2) 40.4 - 461 (13.2 > 13.1) 394 452 (132 » 13.0)
Can 52.8 — 49.8 (24.5 — 24.8) 48.6 +51.7 (19.7 » 24.1) 51.8 —+53.9 (24.2 » 25.6) 47.6 = 47.9 (229 = 25.5) 46.3 - 47.6 (22.2 - 24.8) 49.8 - 52.8 (22.8 — 26.5) 49.0 = 50.6 (24.8 — 24.6) 50.5 = 50.3 (24.5 = 27.1) 49.6 = 50.6 (23.1 - 25.2)
Car 300-332(115-119) 535 - 54.5 (22.3 » 17.2) 54.7 - 62.6 (21.6 » 16.8) 513 - 52.8 (208 - 17.1) 269 - 33.6 (13.0 - 14.9) 47.0 - 50.3 (20.5 - 17.5) 51.6 - 61.5 (23.6 - 20.1) 51.7 - 523 (19.9 -+ 16.0) 45.8 - 50.1 (22.0 » 19.5)
Clock 35.0 - 40.1 (12.9 - 13.1) 33.0 5368 (115 - 11.8) 33.2-36.1 (14.4 - 13.3) 32.7 360 (12.7 > 13.3) 342 371 (139 - 13.7) 352 > 37.7 (12.8 - 10.6) 367 - 39.5 (175 = 149) 33.7 - 381 (10.9 - 123) 34.2 377 (13.4 > 129)
Mouse 253298 (13.3-11.3) 459 -50.7 (16.4 - 12.8) 448 - 543 (18.0 - 12.3) 365 - 40.1 (164 - 13.5) 269313 (151 -153) 42.7 - 48,0 (19.3 > 13.8) 39.9 - 47.1 (162 > 13.7) 40.5 - 459 (168 - 12.5) 37.8 433 (17.9 > 155)
Hat 317372 (11.5-95) 313-336(11.4-86) 30.8-35.4(11.0 > 10.1) 30.1-355(12.7 - 9.8) 309-37.7(11.1-9.1) 29.7-37.4 (108> 11.1) 33.7 385 (11.5 - 10.8) 332-352(11.9-83) 314-363(11.5-97)
Keyboard 385 - 55.4 (26.2 » 21.1) 35.6 - 44.7 (21.6 » 21.1) 26.6-33.0 (17.7 = 17.0] 342439 (248 223) 30.7 - 51.8 (23.7 - 26.4) 33.9-432(22.3-187) 339379 (21.0 - 166) 369 - 458 (27.1 > 18.1) 337443 (232-212)
Piano 415 - 44.8 (16.3 » 12.3) 34.6 - 389 (16.9 » 13.3) 36.2-40.1(11.7 - 11.5) 36.6 - 41.8 (14.2 -+ 104) 40.6 = 46.2 (15.9 = 14.1) 37.3 - 42.5 (16.8 - 13.0) 36.9 - 39.4 (10.0 » 10.8) 37.6-41.8(11.8-11.8) 37.7-419 (144 - 123)
Remote 19.7 - 30.3 (14.7 - 21.9) 22.7 - 35.4 (186 - 25.2) 32.9 386 (23.7 - 27.9) 22,9 341 (186 - 24.2) 185 - 30.7 (111 - 19.1) 245 - 37.5 (148 - 25.0) 29.0 - 35.2 (204 - 265) 26.4 - 360 (188 - 25.6) 24.6 347 (18.3 - 24.4)
‘Telephone. 28,5 -363 (135 - 13.9) 2815362 (123 - 17.0) 31.6-37.9 (141 - 181) 284340 (142 13.7) 26.4 - 345 (11.9 - 14.4) 27.8 367 (12.0 - 15.6) 29.7 350 (14.6 - 17.9) 295355 (122 13.2) 287358 (131 155)
Train 469 - 49.0 (238 - 21.2) 48.5 - 568 (24.4 - 20.8) 36.9 - 43.7 (20.4 - 18.5) 38.3 - 45.3 (20.7 - 20.3) 41.6 - 51.1 (22.3 - 20.9) 445 - 47.5 (235 195) 381 - 438 (222 209)
All 338 39.9 (184 - 17.7) 393 - 44.7 (20.0 - 18.6) 40.4 - 47.2(20.3 - 19.9) 369 - 43.0 (193 - 18.1) 314 -39.1 (17.7 - 19.0) 37.7 > 44.5 (195 - 18.2) 389 - 45.8 (20.0 - 19.4) 39.2 - 44.4 (19.6 - 17.6) 37.2 - 436 (19.6 - 18.7)
Figure 10. F-score performance and standard deviation (in parenthesis) on the 3D-ODDS dataset across the class and angle factors, before

— after REFINEment. Colors correspond to accuracy after REFINEment, normalized across the table. Red indicates lower accuracy, green
indicates higher. Margins correspond to Figure 11 in the main paper.

00WL OTURN OWILD All

0° 32.839.1 (17.0 » 16.7) 33.8 - 39.1 (19.6 - 194) 34.9 > 41.6 (18.6 - 169) 33.839.9 (184 - 17.7)
45° 38.9 - 44.2 (207 - 19.4) 41.2 > 45.8 (195 - 18.6) 37.8 > 44.2 (19.7 - 17.7) 39.3 > 44.7 (20.0 - 18.6)
90° 40.5 > 47.5 (205 - 19.8) 421 - 47.5 (192 - 20.1) 38.7 > 46.6 (21.1 - 19.9) 40.4 - 47.2 (203 - 19.9)
135° 34.5 - 40.8 (17.7 - 17.6) 39.4 - 44.4 (19.1 - 19.0) 36.8 - 43.6 (20.7 > 17.5) 36.9 - 43.0 (193 - 18.1)
180° 32.9 - 39.6 (19.0 - 19.4) 30.4-39.9 (16.1 - 19.0) 31.4-39.1 (17.7 - 19.0)
225° 37.6 - 43.9 (195 - 19.2) 40.3 > 46.1 (192 > 18.5) 35.3 > 43.4 (195 - 16.8) 37.7 > 44.5 (195 - 182)
270° 38.9 - 46.5 (20.5 > 20.5) 39.6 - 44.4 (19.0 - 18.5) 38.3 - 46.3 (20.6 - 19.2) 38.9 - 45.8 (20.0 - 19.4)
315° 37.1-42.4 (19.1 - 17.3) 41.5 - 45.8 (18.9 - 18.2) 39.1 - 44.9 (20.7 - 17.1) 39.2 - 44.4 (19.6 > 17.6)
All 36.4 - 42.8 (194 > 189) 38.8 - 44.1 (194 - 19.1) 36.4 - 43.8 (19.8 - 18.1) 37.2 5 43.6 (19.6 - 18.7)

Figure 11. F-score performance and standard deviation (in parenthesis) on the 3D-ODDS dataset across the domain and angle factors,
before — after REFINEment. Colors correspond to accuracy after REFINEment, normalized across the table. Red indicates lower accuracy,
green indicates higher. Margins correspond to Figure 11 in the main paper.

[ Metric ] Method [ Airplane | Bench | Cabinet | Car [ Chair | Display | Lamp [ Speakers [ Rifle [ Sofa | Table [Telephone] Watercraft | Mean |
AtlasNet [ 1] 6.3 79 9.5 83 7.8 8.8 9.8 10.2 6.6 8.2 7.8 9.9 7.1 8.0
Mesh R-CNN [9] 4.5 3.7 43 38 4.0 4.6 57 5.1 38 4.0 39 4.7 4.1 42
EMD | Pix2Mesh [29] 3.8 29 3.6 3.1 34 33 4.8 3.8 32 3.1 33 2.8 32 34
DISN [33] 22 2.3 32 24 2.8 25 39 3.1 1.9 2.3 29 1.9 2.3 2.6
MeshSDF [23] 33—25(25—2.1|3.2—3.0/12.2—2.0| 2.8—24 | 3.0—24 | 4232 | 35529 [26—1.9| 2724 3.1-2.7 |19—1.7| 2923 |3.0—>25
REFINEd OccNet [22]| 3.0—2.4 [24—2.0(3.1—1.9(2.3—1.9| 2.8—2.6 | 2.4—2.3 | 54—34 | 48—2.7 |25—24|28—17| 34—23 |1.3—1.2| 2924 (2923
AtlasNet [ 1] 10.6 15.0 30.7 10.0 11.6 17.3 17.0 220 6.4 11.9 12.3 12.2 10.7 13.0
Mesh R-CNN [9] 133 8.3 10.5 72 9.8 10.9 16.4 14.8 6.9 8.7 10.0 6.9 10.4 10.3
CD-ls | Pix2Mesh [29] 124 55 8.2 5.6 6.9 8.2 12.3 11.2 6.0 6.8 7.9 4.7 79 8.0
2 DISN [33] 6.3 6.6 11.3 53 9.6 8.6 23.6 145 4.4 6.0 12.5 52 7.8 9.7
MeshSDF [23] 10.6—6.3|9.5—5.4(8.8—7.8|4.2—3.5| 8.2—5.9 | 124—7.3 [25.9—14.9|20.4—12.1|8.9—3.4|11.5—7.8|14.6—10.7| 6.2—3.9 |17.1—10.0{12.0—7.8
REFINEd OccNet [22]| 7.5—6.5 [8.5—5.3|7.4—5.2|5.3—4.9(13.1—8.1{18.7—11.7{30.2—13.1{18.5—10.5|5.9—3.9{10.0—7.1| 11.7—8.8 | 7.6—3.5| 11.9—9.1 [12.2—7.5
AtlasNet [ 1] 91 86 74 94 91 84 81 80 96 91 91 90 90 89
Mesh R-CNN [9] 87 91 90 95 90 89 83 85 93 92 90 95 91 90
F-Score 1 Pix2Mesh [29] 88 95 94 97 94 92 89 89 95 96 93 97 94 93
DISN [33] 94 94 89 96 90 92 78 85 96 96 87 96 93 91
MeshSDF [23] 92—96 |95—97|92—94 | 98—98 | 94—97 91—95 85—91 86—91 [96—98| 94—96 | 91—94 | 95—98 | 93—95 91—95
REFINEd OccNet [22] 94—96 | 95—97 | 94—97 | 93—95 | 90—94 89—96 81—92 86—92 |[95—95| 92—95 92—95 | 96—96 | 90—94 91—96
AtlasNet [ ] 39 34 21 22 26 36 21 23 45 28 23 43 28 30
Vol. ToU 1 Pix2Mesh [29] 42 32 66 55 40 49 32 60 40 61 40 66 40 48
. DISN [33] 58 53 52 74 54 56 35 55 59 66 48 73 56 57
REFINEd OccNet [22]| 57—59 | 49—55| 73—73 | 73—74 | 50—51 47—49 37—43 65—65 | 47—49 | 68—69 | 51—52 | 72—72 | 53—54 57—59

Table 1. Extended, per-class results for reconstruction accuracy with no domain shift. Corresponds to Table 3 in the main paper.

[ I REFINEd OccNet [27] I REFINEd Pix2Mesh [20] I REFINEd AtlasNet [11] ]
| | EMD] [ CD-Ig | [ FScoref [ Vol.LIoUT | EMD] [ CD-I ] [ F-Scoref [ Vol.IoUT | EMD] [ CD-I3 | [ F-Scoref ] Vol IoUT |
Airplane 35—22 | 206 —114 86 — 91 38 — 40 37 —23 223 — 11.0 65 — 88 12— 22 53 —38 419 — 18.2 60 — 82 5—13
Bench 29 —22 28.6 — 17.0 84 — 86 20 — 20 3.6 —2.6 28.0 — 199 65 — 76 9 —11 49 — 4.6 50.0 — 37.7 58 — 68 5—8
Cabinet 34 —27 17.0 — 14.8 83 — 85 45 — 46 3.6 — 3.0 202 — 16.4 74 — 1718 37 — 39 43 — 4.1 30.7 — 19.9 59 — 175 14 —17

Car 29 —25 19.9 — 129 86 — 87 30 — 31 27 —23 10.8 — 7.8 85— 90 24 — 27 7.6 — 4.8 98.8 — 27.0 44 — 72 6— 12
Chair 65— 54 48.5 — 394 72 — 76 29 — 32 6.3 — 4.5 354 — 252 60 — 73 17 — 22 6.8 — 5.0 49.5 — 273 53 —>171 8§ —13
Display 35 —27 30.8 — 18.1 76 — 83 31 — 37 42— 3.0 28.0 — 174 72 — 81 25 — 32 49 — 45 43.1 — 30.0 61 — 71 10 — 14
Lamp 89 — 6.3 90.5 — 59.1 68 — 73 22 —23 92 —17.0 71.6 — 40.6 50 — 66 11— 14 102 — 175 1024 — 51.1 44 — 62 5—10
Speakers 44 —36 | 298 —223 73 — 176 43 — 44 43— 38 314 — 255 65 — 70 36 — 38 54 —47 46.6 — 27.7 55 — 69 13— 17
Rifle 6.5 — 3.9 37.7 — 14.6 86 — 91 30 — 30 35—34 18.1 — 10.1 76 — 91 12 —21 63 — 4.5 61.4 — 28.6 70 — 84 7—14
Sofa 3.0—27 23.8 —+ 179 83 — 85 48 — 49 43— 32 24.8 — 21.8 71— 179 34 — 40 53 —47 48.0 — 31.1 63 — 173 15—19
Table 45—39 40.6 — 34.3 72 =77 17— 20 93 — 6.2 159.3 — 81.8 30 — 44 6—8 89— 74 129.6 — 82.7 36 — 47 4—8
Telephone 23 —20 109 — 8.0 90 — 92 48 — 50 22 —18 109 — 8.2 89 — 92 40 — 44 34 —33 33.6 — 20.8 66 — 79 11— 16
Watercraft 43 —29 | 424 — 235 80 — 86 32 — 36 5.0 — 2.7 32.7 — 14.0 71 — 86 16 — 27 7.1 —43 76.8 — 25.5 55 —179 6 — 15
Mean 43 —33 | 340—225 80 — 84 33 =35 4.8 — 3.5 38.0 — 23.1 67 — 78 22 — 27 62 —49 62.5 — 329 56 — 72 8§ —13
(-1.0) (-11.5) (+4) (+2) (-1.3) (-14.9) (+11) +5) (-1.3) (-29.6) (+16) (+5)

Table 2. REFINEment in the presence of mild domain shift, namely RerenderedShapeNet reconstructions by ShapeNet trained networks
OccNet, Pix2Mesh, and AtlasNet. REFINE achieves gains under all networks, classes, and metrics. Corresponds to the first 3 rows of
Table 4 in the main paper.



I I REFINEd Pix2Vox [37] |
[ | EMD] ] CD-lI> | [ F-ScoreT [ Vol IoUT |

Alrplane 45—23 197173 71— 93 19— 38
Bench 29 — 2.5 253 — 16.5 72 — 80 12— 16
Cabinet 2.8 — 2.8 17.0 — 15.5 79 — 80 43 — 43
Car 32—25 26.3 — 14.6 80 — 85 29 — 32
Chair 53 —35 30.2 — 184 64— 179 23 — 32
Display 39 —32 33.1 — 204 71 — 80 28 — 34
Lamp 9.6 — 6.1 78.0 — 44.6 53 — 65 18 — 23
Speakers 35—35 27.5 — 22.0 72 =175 42 — 44
Rifle 4.8 —3.0 232 — 122 83 — 92 25— 35
Sofa 4.1—32 324 —20.2 72 — 82 43 — 50
Table 6.8 — 54 121.3 — 62.5 35 — 51 8 —11
Telephone 2.1 —21 20.3 — 14.6 79 — 85 34 — 38
Watercraft 5.1 —27 30.3 — 15.2 75 — 87 26 — 42
Mean 45—=733 373 =218 70 — 80 27— 34
(-1.2) (-15.5) (+10) (+7)

Table 3. REFINEment in the presence of mild domain shift, namely RerenderedShapeNet reconstructions by a ShapeNet trained Pix2Vox
Network. REFINE achieves gains under all classes and metrics. Corresponds to the last row of Table 4 in the main paper.
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Figure 12. Occupancy Network mesh REFINEments for Pix3D images in the bed, bookcase, and chair classes.
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Figure 13. Occupancy Network mesh REFINEments for Pix3D images in the desk, misc, and sofa classes.
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Figure 14. Occupancy Network mesh REFINEments for Pix3D images in the tool, table, and wardrobe classes.
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Figure 15. Occupancy Network mesh REFINEments for example 3D-ODDS images.
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Figure 16. Occupancy Network mesh REFINEments for RerenderedShapeNet images in the airplane, bench, and cabinet classes.
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Figure 17. Occupancy Network mesh REFINEments for several ShapeNet images.
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Figure 18. AtlasNet mesh REFINEments for several RerenderedShapeNet images.
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Figure 19. Pix2Mesh mesh REFINEments for several RerenderedShapeNet images.
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Figure 20. Pix2Vox mesh REFINEments for several RerenderedShapeNet images.
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Figure 22. 3D-ODDS objects have 24 images (3 domains, 8 viewpoints). Reconstruction accuracies plotted before (after) REFINE as

orange (green). Generally, REFINE improves performance invariance. Extended version of Figure 10 in the main paper.
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