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Abstract

The problem of amorphous object detection is investi-
gated. A dataset of amorphous objects, Panda bears, with
no defined shape or distinctive edge configurations is in-
troduced. A biologically plausible amorphous object detec-
tor, based on discriminant saliency templates, is then pro-
posed. The detector is based on the principles of discrim-
inant saliency, and implemented with a hierarchical archi-
tecture of two layers. The first computes a feature-based
top-down saliency measure tuned for object detection. The
second relies on a similar saliency measure, but based on
saliency templates, selected from the responses of the first
layer. This architecture is shown to have a number of inter-
esting properties for amorphous object detection, including
the ability to detect objects characterized by the absence of
features, and an interpretation as discriminant blob detec-
tion. Extensive experimental evaluation shows that it sub-
stantially outperforms state-of-the-art approaches for non-
amorphous object detection, such as deformable parts mod-
els, sparse coded pyramid matching, detection based on the
bag-of-features architecture, and the Viola and Jones ap-
proach. This brings into question some currently popular
beliefs about object detection, which are discussed.

1. Introduction

Many object detection approaches have been proposed
over the last decade. These range from the ubiquitous bag-
of-features model [31, 27], to algorithms based on repre-
sentations of shape [2, 10, 11], and models of configura-
tions of parts [9, 5, 12], among others. The development of
these algorithms is, in non-trivial part, guided by the port-
folio of datasets available to compare different approaches.
This portfolio has been considerably enriched and diver-
sified since the early days of the UIUC carside and Cal-
tech4 datasets. Recent benchmarks are much more exten-
sive, covering a much larger number of object categories,
viewpoints, and intra-class variation.

Nevertheless, it could be argued that current datasets

Figure 1.Example images from the PandaCam dataset. Note the high
variability of view points, illumination, and object pose.

only cover the extremes of the spectrum of scenarios faced
by a practical object detector. One of these extremes cor-
responds to the detection of broad object categories, such
as “airplane”, “dog”, “cat”, etc., and datasets such as Cal-
tech256, or PASCAL VOC. Each of the categories in these
datasets is comprised of many distinguishable object sub-
groups of widely different appearance, e.g. the subclasses
“siberian husky”, “bulldog”, and “yorkshire terrier” of the
“dog” class. This constrains the number of training ex-
amples per sub-class, which is usually small, and bias the
benchmarks towards specific classifier architectures. For
example, because kernelized SVMs can store large portions
of the training set as support vectors, it is not surprising that
the combination of these classifiers with sophisticated ker-
nels, and the loose bag-of-words representation, achieves
good performance on these datasets.

On the other end of the benchmarking spectrum are tasks
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such as face or pedestrian detection. These refer to nar-
rowly defined object classes, e.g. frontal faces or upright
pedestrians, and datasets with a large ratio of training im-
ages to distinguishable object sub-classes. Such datasets
sample the appearance of a more or less constant object in
widely varying imaging contexts. It is thus not surprising
that their most successful solutions are based on templates
of object appearance, using shapelets [24], configurations
of HOG [5, 9, 20], or Haar features [28].

In this work, we investigate object detection in the con-
text of a real application which is not covered by these two
scenarios. This application involves objects that lack many
of the features commonly used for object detection, and
which we denoteamorphous. Strictly speaking, amorphous
objects have no distinctive edge configurations, texture, or
a well defined shape. They can be found in science fiction
movies, in the form of jelly-like creatures that can take any
desirable shape. While, in the real world, truly amorphous
objects are rare, many real objects are close to amorphous
(e.g. a jellyfish, a bean bag, etc.), and an even larger set
quasi-amorphous. By this, we refer to objects that can have
very characteristic appearance under some canonical poses,
but appear amorphous under others. Many such examples
exist in the animal world. This is illustrated by Figure 1,
which shows a Panda bear under multiple poses. While the
Panda face is very iconic, faceless poses tend to be quite
amorphous. We will not worry further about these fine dis-
tinctions, simply referring to such objects asamorphous.

This work makes two contributions to the detection of
amorphous objects. The first is an object detector, based on
the idea ofdiscriminant saliency templates.The intuition is
that (at least in the natural world) the most distinctive prop-
erty of amorphous objects is their lack of low level features,
when compared to the surrounding scenes. This suggests
modeling these objects asblobs of feature absence, i.e. re-
gions where features that are usually active for natural im-
ages have a much weaker object response. One possibility
for amorphous object detection is thus to rely ondiscrimi-
nant blob detection,by identifying blob-like regions in the
responses of a set offeatures that are discriminantfor ob-
ject detection. A potential problem is, however, that dis-
crimination may be due to theabsenceof feature responses.
We overcome this problem by formulating blob detection as
a form of top-down discriminant saliency [13].

Under this approach, detection is based on a two level
classification architecture which implements a combination
of feature-basedandtemplate-baseddiscriminant saliency.
The first level consists of a feature-based top-down saliency
model, tuned for the detection of the target object. It is
a robust classifier, that can detect the absence of a set of
features, if this absence is informative of object presence.
However, it is not highly selective, frequently generating
false positives in background image regions. The second

level learnsdiscriminant templatesof saliency response,
which are then used to detect blobs of saliency compatible
with the target object. This is again implemented with a top-
down discriminant saliency model, tuned for object detec-
tion, which operates on saliency templates rather than image
features. Altogether, this classifier is selective, yet robust
enough to detect highly deformable objects of reduced vi-
sual structure. The use of saliency, rather than appearance,
templates also makes it robust to pose variation.

The second contribution of this work is adatasetfor the
evaluation of amorphous object detectors. This dataset was
assembled from video of a real animal habitat, the Panda
bear exhibit of the San Diego Zoo, over the period of one
year [1]. It resembles current pedestrian datasets, in thatit
requires the detection of a few objects under various imag-
ing contexts. On the other hand, it is similar to object cat-
egory datasets, in the sense that Pandas have wide variabil-
ity of appearance. As can be seen from Figure 1, this is
in part because they are highly deformable objects, and in
part because the video feed is collected from multiple cam-
eras, with multiple fields of view (varying backgrounds), at
different distances from the Panda exhibit (varying scales),
from different angles (varying poses), at different locations
(indoors vs outdoors), at multiple times of the day, week,
and year (different atmospheric conditions, variable shad-
ing, lighting, etc.), and with different potential occluders.

One of the attractives of the PandaCam dataset, is that it
challenges currently prevalent beliefs about object recogni-
tion. For example, results on current datasets suggest that
normalized representations of local image orientation are
critically important for object detection. In fact, these rep-
resentations are the only unifying link between the success
of bag-of-features (almost invariably based on SIFT) on
the PASCAL end of the spectrum, and template-based ap-
proaches (usually based on HOG) on the pedestrian end of
the spectrum. On PandaCam, a comparison of the proposed
detector with an equivalent approach built on templates of
SIFT response shows that saliency templates achieve sub-
stantially higher localization performance. As an object de-
tector, the proposed approach is also shown to achieve bet-
ter performance than state-of-the art methods for template-
based detection, namely the discriminant parts-based model
of [9], detection based on the bag-of-features model [18],
the sparse coded spatial pyramid matching method of [30],
and the Viola Jones detector [28].

2. The PandaCam dataset

We start by introducing the PandaCam dataset, so as to
motivate the challenges of amorphous object detection.

2.1. The dataset

The video feed provided by San Diego Zoo depicts the
real time movement of a Panda family in a natural habitat,

18



Table 1.Edgeness statistics for object and background in the PASCALVOC and PandaCam datasets.
aeroplane bicycle bird boat bottle bus car cat chair cow PandaCam

obj .0111 .0176 .0135 .0153 .0181 .0164 .0202 .0092 .0112 .0167 .011
back .0045 .0107 .0101 .0104 .0085 .0103 .0111 .0079 .0088 .0126 .0146

diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor –
obj .012 .0106 .0134 .0181 .0113 .018 .0174 .0076 .0151 .0113 –

back .0077 .0092 .0135 .0097 .0078 .0112 .0132 .0064 .0112 .0076 –

which includes bamboo trees, ponds, a small cave formed
of rocks, and several other small structures. The dataset is
divided into5, 018 positive images containing Pandas and
2, 987 negative images without the animals. A bounding
box is provided as detection ground truth for the positive
images. The relative size of the objects varies from2%
to 90% of the image size. The variations in appearance
are very large, due to the highly deformable shape of the
Pandas, and the collection of the video from multiple cam-
eras and multiple viewpoints. Illumination changes are also
dramatic, since the dataset reports to a live cam that oper-
ates continuously, 24/7. Finally, the dataset is unique in the
sense that the background clutter is much more structured
than the objects to detect. Background trees, tree branches,
rocks and leaves all have a rich combination of structure,
shape, and texture. This is unlike the Pandas, which are
mostly textureless and lack shape-defining edges.

2.2. Amorphous object statistics

To demonstrate this point, statistics of the PandaCam
dataset were compared to those of PASCAL VOC. In par-
ticular, we considered a measure of “edgeness”, and com-
pared the relative amounts of this property in object and
background, for the two datasets. To quantify edgeness,
we filtered the image with a set of band-pass filters (Ga-
bor functions of four orientations). It is well known that
the responsesX of such filters to natural images follows a
generalized Gaussian distribution (GGD) [6]

PX(x; α, β) =
β

2αΓ(1/β)
e−( |x|

α )
β

, (1)

whereΓ(z) =
∫ ∞

0
e−ttz−1dt, t > 0 is the Gamma func-

tion, α a scale parameter, andβ a parameter that con-
trols theshapeof the distribution. It is also known that
β tends to be fairly stable, assuming values in the range
β ∈ [0.5, 0.8] [26]. We have confirmed this observation,
and useβ = 0.5 throughout this work.

Given a training sampleD = {x1, . . . , xn} of filter re-
sponses, the MAP estimate of the scale parameterα based
on a conjugate prior is

α̂β
MAP =

1

κ





n
∑

j=1

|xj |
β + ν



 , with κ =
n + η

β
, (2)

whereη andν are prior hyper-parameters [14]. The scaleα
is proportional to the variance of the responses, and a good

measure of their activity. For the features considered here, it
measures the image edgeness along the feature orientation.

Table 1 presents theα estimates obtained for object and
background using the bounding boxes provided by PAS-
CAL VOC and PandaCam. Larger values ofα imply more
edge structure. Note that the edgeness of the Panda object is
much smaller than those of most object classes in PASCAL.
The Panda detection problem is unique in the sense that the
background has much richer structure than the object itself.

3. Discriminant saliency

The amorphous object detector proposed in this work is
based on discriminant saliency. We next briefly review how
this saliency principle can be used to implement a top-down
measure of saliency, tuned for object detection. Saliency is
formulated as optimal (in the minimum probability of er-
ror sense) classification of the visual stimulus into one of
two hypotheses: atarget (Y = 1) hypothesis of stimuli
that are salient, and anull (Y = 0) hypotheses contain-
ing backgroundstimuli [14]. Salient locations are those
where target presence can be declared with largest confi-
dence. Confidence is measured by the strength with which
visual features in a regionA(l), surrounding a locationl,
can be declared observations from the target class, by the
optimal decision rule for target/background classification.

This is measured by the expected ratio of the likelihood
of the observations under the target and null hypotheses, or
Kullback-Leibler divergence,

S(l) =

∫

x∈A(l)

PX|Y (x|1) log
PX|Y (x|1)

PX|Y (x|0)
dx.

Using the standard approximation of risk by empirical risk,

S(l) ≈
1

|A|

∑

i∈A(l)

δi log
PX|Y (xi|1)

PX|Y (xi|0)
(3)

whereδi = 1 if xi is a sample from the target class and
δi = 0 otherwise. The class-assignment variables are in-
ferred with recourse to the Bayes decision rule, i.e. by re-
placingδi with

δ̂i =

{

1 if PY |X(1|xi) ≥ 0.5
0 otherwise.
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With these estimates, (3) can be written as [15]

S(l) =
1

|A|

∑

l∈A(l)

ξ(P(l)) (4)

ξ(x) =

{

1
2 log x

1−x
, x ≥ .5

0, x < .5,

where
P(l) = PY |X(1|x(l))

is the posterior probability of the target class given the fea-
ture responses observed at locationl. This posterior proba-
bility is itself a function of the log-likelihood ratio, since

P(l) = σ[g(x(l))] (5)

with

g(x(l)) = log
PX|Y (x(l)|1)

PX|Y (x(l)|0)
(6)

σ(x) = 1/(1 + e−x). (7)

When feature responses have GGD distribution of scalesα1

andα0 under the target and null hypotheses, respectively,
the log-likelihood ratio simplifies to

g(x(l)) =
|x(l)|β

αβ
0

−
|x(l)|β

αβ
1

+ T, (8)

whereT = log
(

α0

α1

)

. The parametersαβ
i are learned from

training samplesDi of feature responses from the target and
background classes, using (2).

4. The importance of feature absence

Feature absencehas an important role in the detection
of amorphous objects. We next discuss how discriminant
saliency naturally accounts for this.

4.1. Amorphous objects and feature absence

Amorphous objects lack many of the features that are
commonly used as cues for object detection. They do not
have many distinctive edges, may not have a very distin-
guishable texture, and are characterized by a large shape
variability. In fact, as shown in Figure 1, they can be thought
of as blobs of low image complexity. However simple blob
detection [4, 29] is unlikely to successfully find Pandas, as
there are many blob-like regions in the backgrounds of Fig-
ure 1: smooth rocks, tree trunks, light reflections on interior
walls, areas of the exhibit floor, etc. One possibility is to
rely ondiscriminant blob detection, by identifying blob-like
regions in the responses of features that arediscriminant for
Panda detection. These are regions of featureabsence,i.e.
where features that are usually active for natural images,
have a much weaker response to the Panda stimulus. Fea-
ture absence is naturally detected by discriminant saliency.

4.2. Saliency and feature absence

We start by noting that this is not true for all formulations
of saliency. While many saliency detectors have been pro-
posed in the literature, most emphasize the detection of the
presenceof certain features in the visual field. This is, for
example, the case of interest point detection, which is ex-
plicitly formulated as the detection of corners [16], points
of image curvature [21], activity [17], or texture complex-
ity [6]. A popular generalization of this idea [23, 32, 3], is
to detect features of low probability within the visual field.
Its decision theoretic implementation, for GGD feature sta-
tistics, is to find the locationsl where feature responses have
maximum entropy [17]

H(l) = −

∫

A(l)

PX(x) log PX(x)dx (9)

= K +
1

2|A(l)|

∑

i∈A(l)

(

|xi|

α

)β

whereK = log 2αΓ(1/β)/β, andα is the GGD scale for
the feature responses accross the visual field. Note that this
is, in many aspects, similar to the measure of (3). It is, in
fact, equivalent in the limit ofα1 → ∞, if α = α0 and
the non-linearitiesσ(.) andξ(.) are replaced by the identity
map. While this may appear a small difference, it has a
major impact on the ability of the saliency detector to switch
between the detection offeature presenceandabsence.

Discriminant saliency can switch between these two de-
tection strategies because it has access totwo scale parame-
ters,α1 andα0. Whenα1 = α0, the target and null distrib-
utions are identical, i.e. there is nothing to discriminate, and
saliency is null for allx. Whenα1 > α0, the target distrib-
ution has a heavier tail than that of the null hypothesis, and
saliency is high forlarge feature responses. Conversely, the
null hypothesis has heavier tail whenα1 < α0, and only
small feature responsesare salient in this case.

The two behaviors are illustrated in Figure 2 a), which
presents the characteristic function of the discriminant
saliency detector - curve ofξ(P(l)) as a function ofx(l)
- for different values ofα1, whenα0 = 1. Note how 1)
the presenceof the featureX (large feature response|x|)
elicits a strong saliency response whenα1 > 1, but 2)
strong saliency responses are reserved for featureabsence
(small |x|) whenα1 < 1. For comparison, the characteris-
tic curve of the entropy-based detector is shown Figure 2 b),
for α = 1. In this case, all degrees of freedom are exhausted
once the background distribution is fixed, and the saliency
detector isalwaysa detector of feature presence.

5. Amorphous object detection

We next consider the design of an amorphous object de-
tector based on saliency templates, derived from the dis-
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Figure 2.Characteristic function of (a) discriminant saliency and (b) en-
tropy measure.

criminant saliency principle.

5.1. Discriminant saliency networks

The saliency computations of Section 3 can be imple-
mented with a network that mimics the standard neurophys-
iological model of the visual cortex [15]. The network has
two layers, one of simple and another of complex cells. The
simple cell layer computes thetarget posterior mapP(l),
which is then transformed into thesaliency mapS(l) by the
complex cell layer. A simple cell is associated with each
locationl of the visual field, and implements the computa-
tions of (5)-(8) and (2). This is the combination of filtering,
divisive normalization, and a saturating non-linearity with
which simple cells are modeled under the standard neuro-
physiological model. A complex cell then pools the simple
cell responses within the regionA(l), after application of
the non-linearityξ(x), to implement (3). These are the oper-
ations of complex cells under the standard neurophysiologi-
cal model. The resulting saliency value,S(l), is a decision-
theoretic measure of the confidence with which the feature
responses atl can be assigned to the target class. The two
layer network of (simple and complex) units is denoted a
discriminant saliency network[15].

5.2. Discriminant saliency templates

The proposed amorphous object detector is based on
discriminant saliency templates. These are discriminant
templates of saliency response, derived from features that
are themselves discriminant for the detection of the target
object. As illustrated in Figure 3, the detector is imple-
mented as a two-stage discriminant saliency network. The
two stages are identical up to the features used to evalu-
ate saliency, i.e. the linear filtering implemented by their
simple cells. The first layer relies on low level features,
such as measures of image orientation [25, 22], color oppo-
nency, image intensity [8], projections into standard signal
basis (wavelets or Gabor expansions), or even random pro-
jections [19]. These features can be deemed discriminant
due to either their presence or absence in the target object.
In this work, we use the first four filters in a discrete cosine
transform (DCT) basis of size8 × 8, other than the aver-
age (DC) filter. These filters are illustrated in Figure 3. For
amorphous objects, saliency responses usually reflect a mix

…
…* * *…

…* * *Complex unit (local averaging)

Figure 3.Architecture of the proposed template-based saliency detector.
DCT features are used in the first network layer, and saliencytemplates in
the second. The saliency computation is repeated at multiple scales.

of feature presence and absence, allowing the saliency map
to be active in blob-like regions of low image complexity.

The second stage aims to detect configurations of
saliency, produced by the first, which are distinctive for
the target object. These salient configurations of salient
feature responses capture information about object shape.
The implementation of the second network stage has some
resemblance to the second layer of the HMAX network
of [25, 22]. A number of saliency templates are first ran-
domly sampled from the outputs of the first network stage,
during training. This is done by extracting patches, cen-
tered at random locations and scales, of response to ran-
dom target images. Each patch has dimensionn × n × 4,
for n ∈ {4, 8, 12, 16}, and is normalized to zero mean and
unit norm (over the4 channels). During detection, the nor-
malized patches (denoted patch filters) are correlated with
first stage responses, to extract a second level of feature re-
sponses. These are then processed by the second stage of
the network, to determine the saliency of these responses.
Note that, unlike the HMAX network, which measures dis-
tances between patch filter and first stage response, this op-
eration measures the discriminant power of the patch filter
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(saliency template) to classify first stage responses into ob-
ject and background. This reinforces the responses of the
templates that are discriminant for object detection and sup-
presses those of templates that are not.

6. Experiments

In this section, we describe a number of experiments de-
signed to evaluate the performance of the proposed amor-
phous object detector.

6.1. Experimental Setup

In the PandaCam dataset, images are ordered by time
stamp. In all experiments, the first2, 518 positive images
were used for training and the remainder2, 500 as a test set.
All positive training examples were cropped and normal-
ized to a height of80 pixels, while maintaining the original
aspect ratio. The assembly of negative examples followed
the iterative procedure of [5, 9]. Object detection was based
on the saliency maps produced by the network of Figure 3.
5, 000 templates were randomly selected from first layer re-
sponses to positive training examples. The KL divergence
between the GGD responses to object and background was
then computed per template. The500 templates of largest
discriminant power were finally selected. Saliency maps
produced by these templates were added into an overall
saliency map, which was used for object detection.

Object detection was performed at7 scales of a pyramid
decomposition of each test image. More precisely, an im-
age of sizeH × W was expanded into7 pyramid layers of
size20.5iH × W , for i ∈ {−1, 0, 1, . . . , 5}. This produced
7 saliency maps per image. The location of largest saliency
was then found, at each scale, with a combination of box fil-
tering and non-maximum suppression. A box filter of size
N×N and amplitude1/(N×N)γ , was first convolved with
all scale saliency maps, usingN = 80 × 20.5i for scalei.
The parameterγ was determined by cross validation. Non
maximum suppression (sizeN × N ) was applied to the fil-
tered saliency maps, to detect the location and the scale of
largest saliency.

6.2. Saliency as focus of attention

We start by analyzing the performance of template-based
saliency as a focus of attention mechanism. Its localization
performance is compared to those of a SIFT-based saliency
method, and a localization method based on discriminant
visual words [7]. The SIFT-based saliency method is iden-
tical to that now proposed, but uses templates of SIFT re-
sponse instead of saliency templates. Each image is repre-
sented by a collection of SIFT descriptors, extracted on a
dense sampling grid of16 × 16 patches, with6 pixels of
grid spacing. As for template saliency,5, 000 templates of
SIFT response were randomly chosen from the set of re-
sponses to positive examples, and normalized to zero mean

Figure 4.Images from the PandaCam dataset (top row), and saliency maps
produced with saliency templates (second row), SIFT templates (third),
and discriminant visual words (fourth).

and unit variance. Theses SIFT templates were then corre-
lated with the SIFT responses to each training example, and
the KL divergence between responses to object and back-
ground computed per template. The most discriminant500
templates were finally used to produce SIFT-based saliency
maps.

To compute saliency from visual words, images are rep-
resented as bags of SIFT descriptors, and quantized with a
codebook of1, 000 words, learned with k-means. The dis-
criminant power of visual word, w, is then measured by the
discriminability function proposed in [7],

D(w) =
# target images containingw

# images containingw
. (10)

The SIFT descriptor extracted from each image locationl is
then quantized into the closest visual wordw∗. The saliency
at l is the discriminabilityD(w∗).

Figure 4 shows examples of saliency maps produced by
the three methods. Test images are shown on the top row,
template-based saliency maps on the second, SIFT-based
saliency maps on the third, and saliency maps based on vi-
sual words on the fourth. Note that the latter are very noisy,
with many false positives on the background, and few strong
responses at target locations. SIFT-based saliency maps
have much better localization, suppressing most responses
from the background. However, while capturing the edge
or contour structure of the target, they fail to respond to
the object interior. This is not surprising, since SIFT is
based on image gradients and the object interior is mostly
smooth. Nevertheless, it is quite difficult to locate the object
from these saliency maps. This task is much easier from the
saliency maps produced by saliency templates, which 1) are

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

template saliency (0.31)
SIFT saliency (0.23)
disc. visual word (0.16)

Figure 5.Precision recall curves for object localization.

active in the object interior, and 2) have even less false posi-
tives on the background. An objective comparison of local-
ization performance in given in Figure 5, in the form of a
precision recall curve. This curve is produced by threshold-
ing the saliency map at various amplitude levels, measur-
ing the overlap between the above-threshold region and the
bounding box ground truth, and averaging over test images.
The average precision is0.31 for template saliency,0.23 for
SIFT saliency, and0.16 for discriminant visual words.

6.3. Detection performance

The detection performance of template-based saliency
was compared to those of the discriminatively trained part
based model (partModel) of [9], the sparse coded spatial
pyramid matching (ScSPM) method of [30], the bag-of-
features (BoF) method of [18], and the Viola-Jones (VJ)
detector, which combines boosting and Haar features [28].
The partModel was learned with6 components, and the re-
sults reported were obtained with the non maximum sup-
pression method of [9]. Detection with ScSPM, BoF, and
VJ was based on a sliding window, using windows of seven
scales, and a step size of10 pixels. The non-maximum sup-
pression scheme used for template saliency was also applied
to these methods. For BoF and ScSPM, we used a spatial
pyramid of2 levels and a codebook of1, 000 visual words.

Object detection performance was evaluated with the
PASCAL measure, which requires an overlap greater than
50% between the bounding boxes of the detection area and
ground truth. Figure 7 shows the curve of detection rate
vs false positives per image (fppi) for all methods. The
partModel was unable to model the Panda with the finite
set of poses those were available, and achieved the worst
performance of all methods. Both ScSPM and BoF pro-
duced a significant improvement, with ScSPM achieving
slightly better performance. Another performance boost
was achieved with the VJ detector. Finally, the template-
based saliency detector produced the overall best perfor-
mance. The detection rate at0.3 fppi was71.5% for tem-
plate saliency,66% for VJ, 58.6% for ScSPM,56.8% for
BoF and43.8% for the partModel. Figure 6 shows detection
examples by the template-based saliency detector. White
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Figure 7.Curves of detection rate vs false positives per image.

windows indicate the ground truth and blue and red win-
dows indicate detections. Blue is used for correct detections
under the PASCAL measure, and red for false positives.

Besides the superiority of template-based saliency, an in-
teresting conclusion from these experiments is the good per-
formance of VJ. This is due to the fact that, unlike the part-
Model, BoF, and ScSPM, this method does not depend on
image gradients. Instead, it relies of Haar features that can
capture edgeless blobs. These results suggest that recogni-
tion approaches based on low level features other than the
now predominant gradient based ones need to be studied
rigorously.
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