Semi-supervised Long-tailed Recognition using Alternate Sampling
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1. iNaturalist2018-SSLT

Dataset.  We further curate a benchmark for semi-
supervised long-tailed recognition based on iNaturalist
2018 [2]. iNaturalist 2018 is a long-tailed dataset sampled
from natural distribution. We follow the distribution in both
of the labeled and unlabeled subset. More specifically, Sam-
ples in each class is randomly down-sampled one-fifth of
the total number as labeled data, and the remains are as-
signed as unsupervised subset. Classes with less than 2
labeled samples are eliminated. In result, iNaturalist2018-
SSLT contains 8080 classes, with labeled samples from 200
to 2, and the unsupervised subset is 4 times larger.

Classes are divided into three splits based on the number

of labeled samples: many-shot ([100, +00)), medium-shot
([10,100)), and few-shot (]2, 10)). It is a extremely long-
tailed dataset, with 134 many-shot classes, 1220 medium-
shot classes, and 7010 few-shot classes.
Results. Results are shown in Table 1. Our method is
the only one that improves the overall performance upon
baseline. iNaturalist2018-SSLT is different from our other
benchmarks in the amount of few-shot classes. It has a very
long tail taking up 87% of the label space. This makes the
dataset especially hard when combined with unsupervised
data.

With the inferior quality of predictions, we see signifi-
cant drop of Pseudo-Label method in many-shot split. In
fact, Pseudo-Label decreases the accuracy of baselines in all
splits. Our method mitigates this problem, and improve the
few-shot performance. Given the fact that most classes are
in few-shot split, our method is the only one that increase
the overall performance.

Comparison among benchmarks. From CIFAR-10-SSLT
to ImageNet-SSLT and iNaturalist2018-SSLT, the datasets
have more and more classes and few-shot classes. In result,
they are more and more challenging. This challenge makes
Pseudo-Label method ineffective. From CIFAR-10-SSLT
to ImageNet-SSLT, the shortcoming first appears in many-

shot splits. On ImageNet-SSLT, Pseudo-Label improves the
few-shot performance with a sacrifice of many-shot perfor-
mance. Our method is more robust to this difficulty. It keeps
the many-shot performance while improves the few-shot
performance. On iNaturalist2018-SSLT, the Pseudo-Label
improvement on few-shot split also disappears, and the drop
on many-shot is big. Our method, however, can still im-
proves the few-shot performance and control the drop of
many-shot compared to the baseline.

All of these results show that semi-supervised long-
tailed recognition is a challenging problem. Given the fact
that this problem follows the natural workflow of data col-
lecting, we believe it deserves more attention in the litera-
ture.
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Table 1. Results(Accuracy in %) on iNaturalist2018-SSLT. ResNet-50 are used for all methods. For many-shot ¢ > 100, for medium-shot
t € (10, 100], and for few-shot ¢ < 10, where ¢ is the number of labeled samples.

Method ‘ Overall Many-Shot Medium-Shot Few-Shot
Decoupling [1] 279 54.1 41.7 24.8
Pseudo-Label + Decoupling 26.3 39.9 35.8 243

Ours | 284 49.5 38.7 26.1




