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Abstract

In this work, we propose a novel video representation
for activity recognition that models video dynamics with
attributes of activities. A video sequence is decomposed
into short-term segments, which are characterized by the
dynamics of their attributes. These segments are modeled
by a dictionary of attribute dynamics templates, which are
implemented by a recently introduced generative model,
the binary dynamic system (BDS). We propose methods for
learning a dictionary of BDS’s from a training corpus, and
for quantizing attribute sequences extracted from videos
into these BDS codewords. This procedure produces a rep-
resentation of the video as a histogram of BDS codewords,
which is denoted the bag-of-words for attribute dynam-
ics (BoWAD). An extensive experimental evaluation reveals
that this representation outperforms other state-of-the-art
approaches in temporal structure modeling for complex ac-
tivity recognition.

1. Introduction
The recognition of human activities and events is an

important problem for computer vision. Two lines of re-
search have received substantial attention in this area. The
first, motivated by the fact that an activity is naturally de-
fined by an ordered set of short-term behaviors, aims to
model the temporal composition of activities. This is usu-
ally done with low-level video representations. In fact,
many methods have been proposed to model the temporal
structure of low-level features extracted from video, e.g.,
histograms of spatiotemporal filter responses. This includes
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Figure 1: Challenges in modeling the dynamics of attributes of
complex activities. (Top) YouTube video sequence annotated with
“tennis-serve” activity. (Bottom) associated trajectory on a 3D at-
tribute space (red for “arm-motion”, green for “foot motion” and
blue for “ball motion”). Note the complexity of the trajectory and
the fact that only a short segment (red-shaded) is a staple of the
action of interest.

both discriminative [11, 16, 7, 24] and generative mod-
els [12, 9, 4]. The second, inspired by recent advances in
image analysis, is to represent activities as collections of
semantic attributes [15, 22, 21, 6]. This entails an interme-
diate level of representation, where features are no longer
visual, but identifiers of the occurrence of semantic con-
cepts of interest, such as scene types, actions, objects, etc.
This higher level of abstraction enables better generaliza-
tion, facilitates semantic and contextual reasoning, and en-
ables knowledge transfer from well-understood examples to
unseen instances.

Advances along these two directions are complementary.
While a detailed characterization of the temporal structure
on top of low-level features is, in general, insufficient to
characterize complex activities, the representation of video
as an orderless set of attributes is incapable of fine-grained
activity discrimination (i.e., distinguishing between activi-
ties which express the same attributes in different orders).
Recently, [14] has proposed to unify the two research di-
rections, by modeling the temporal structure of the video
projection in an attribute space. This was implemented by
introducing a dynamic model, denoted binary dynamic sys-
tem (BDS), which extends classical linear dynamic systems
to binary observation spaces. While this model has been
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shown to achieve state-of-the-art performance in standard
benchmarks, it does not address two of the most significant
challenges in the recognition of complex activities. The first
is that such video rarely contains only the event of interest.
In general, video sequences are only annotated with respect
to a dominant event, or high-level subject, and not with re-
spect to the footage that either precedes or trails it. The sec-
ond is that a single model, such as the BDS, is unlikely to
provide a good fit to the complex attribute space trajectories
produced by the video. This is illustrated in Figure 1, which
presents the trajectory of a video of the “tennis serve” activ-
ity in a space spanned by three closely-related attributes.

In this work, we propose to address these limitations
with a new video representation, which is denoted the bag-
of-words for attribute dynamics (BoWAD). This is an ex-
tension of the bag-of-visual words (BoVW), which has
achieved great popularity for image classification [27]. Like
the BoVW, the BoWAD is an histogram with respect to a
dictionary of templates. However, rather than templates of
visual appearance, it relies on templates of attribute dynam-
ics. These templates are in fact generative models and, more
precisely, temporally localized BDS’s. In this way, an ac-
tivity is represented as a collection of characteristic short-
term behaviors, and no single BDS needs to model unduly
complex attribute trajectories. We propose a procedure for
learning a dictionary of BDS’s, and for quantizing video
with respect to this dictionary, and show that the representa-
tion achieves performance superior to that of state-of-the-art
approaches of temporal structure modeling in challenging
datasets.

2. Related Work
Over the last decade, the bag-of-features (BoF) has be-

come a popular video representation for action recogni-
tion [26]. This consists of representing video as a collection
of feature vectors. Several models exploiting the temporal
structure of activities are based on this representation. For
example, Laptev et al. [11] used a spatio-temporal binning
pyramid to match vector-quantized histograms from differ-
ent video regions. Niebles et al. [16] and Gaidon et al. [7]
represented an activity with a small number of decompos-
able parts or atomic actions. Alternatives based on gener-
ative models have also been proposed. Laxton et al. [12]
integrated confidences about objects and sub-actions over
time, with dynamic Bayesian networks. Finally, dynamic
systems have been used to represent the evolution of human
activity, using different features (local binary patterns [9],
tracked parts [13], or frame-wise motion histograms [4]).

Recently, image analysis research has shown that se-
mantics or attribute-based representations can have sub-
stantial benefits over BoF, including better generalization
and support for contextual reasoning [18, 10, 19]. This
has motivated the application of these representations to

action recognition. For example, Liu et al. [15] pro-
posed the use of attributes as latent variables for support
vector machines (SVMs) to recognize actions. Sadanand
and Corso [22] have shown substantial improvements over
standard benchmarks by using a bank of action detectors
sampled broadly across semantic and viewpoint spaces.
Rohrbach et al. [21] augmented video with text-script data
and modeled activities as common sets of attributes, defined
in terms of basic actions and objects. Finally, Li and Vas-
concelos [14] introduced a model (BDS) of the temporal
structure of attributes. This work suggests that the model-
ing of video trajectories in attribute space is crucial for the
fine-grained understanding of human behavior .

In this work, we expand on the idea of [14], by learn-
ing dictionaries of models for attribute dynamics. This is
related to the bag-of-systems framework of [20, 1], where
a set of dynamic textures (DTs) [5] were used to charac-
terize dynamic scenes. The main challenge of this dic-
tionary leaning problem is the difficulty of identifying the
“centroid” of a collection of dynamic textures, due to the
non-Euclidean nature of the space of linear dynamic sys-
tems. [20] bypasses this problem with resort to a somewhat
heuristic combination of multi-dimensional scaling and k-
means (denoted MDS-kM); while [1] presents a procedure
to directly average dynamic models in the parameter space,
the approach only works for LDS’s. We propose an alterna-
tive principled solution, which is specifically designed for
clustering attribute sequences, and has a number of advan-
tages over MDS-kM. These are shown to result in superior
recognition accuracy.

3. The Bag of Words for Attribute Dynamics
In this section, we introduce a new representation for

activity recognition, denoted the bag-of-words for attribute
dynamics (BoWADs).

3.1. Words and Attributes

A popular representation for image classification is the
bag of visual words (BoVW) [27], which has recently also
become popular for action recognition [26]. This consists of
representing an image as a BoF, learning a dictionary of rep-
resentative feature vectors, which are denoted visual words,
and using this dictionary to quantize the features extracted
from an image to classify. The BoVW is the resulting his-
togram of visual word counts. This is frequently used as a
feature vector for image or video classification. Despite the
popularity of the BoVW, several works have demonstrated
the benefits of alternative feature spaces, which encode
higher-level semantics by representing images or video as
collections of binary attributes [18, 10, 19, 15, 14].

Under this representation, activities are defined with re-
spect to a set of K attributes C = {ci}Ki=1, inferred from
video frames by a bank of attribute classifiers {πi}Ki=1. Pos-
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Figure 2: Learning a BDS. Video sequences (left) are encoded as trajectories in attribute space S (center). Sequences of similar semantics
span similar trajectories. The BDS Ω embeds a video trajectory into a low-dimensional space (shown in green), by binary PCA, and learns
a Gauss-Markov process that describes the corresponding trajectory in the latent state space (right).

sible attributes include scene classes, objects, atomic ac-
tions, human-object interactions, etc. A video v ∈ X is
mapped into an attribute space S by a mapping

π : X → S = [0, 1]K , (1)

where
π(v) = (π1(v), · · · , πK(v))T (2)

is an attribute score vector. Component πi(v) is a confi-
dence score quantifying the presence of the i-th attribute in
v. In this work, these scores are the posterior probabilities
πc(v) = p(c|v) of attribute c given some low-level represen-
tation of video v, e.g., a BoF histogram of spatio-temporal
descriptors.

3.2. Attribute-based Activity Recognition

In [15] a vector of attribute scores π(v) is computed for
the whole video sequence v. This holistic attribute represen-
tation disregards the temporal structure of the different at-
tributes. While it can distinguish activities that lie on differ-
ent regions of S, it cannot disambiguate activities that con-
tain similar attributes but with different temporal structure.
This problem can be overcome by applying the attribute
classifiers to video segments vt extracted with a sliding win-
dow. As illustrated in Figure 2, this produces a sequence of
attribute score vectors {πt}τt=1, whereπt = π(vt). In sum-
mary, a video sequence is modeled as a trajectory in S and
sequences of similar semantics span similar trajectories.

Li and Vasconcelos proposed to model a video trajectory
in S with a binary dynamic system (BDS) [14], defined by

{
xt+1 = Axt + vt, (3a)
yt ∼ B(y;σ(Cxt + u)), (3b)

where xt ∈ RL (L is the dimension of the latent space) and
yt ∈ [0, 1]K are state and observation variables; u ∈ RK a
bias term; A ∈ RL×L a state transition matrix; C ∈ RK×L
an observation matrix; vt ∼ N (0, Q) a state noise pro-
cess; x1 = µ0 + v0 ∼ N (µ0, S0) an initial condition;

B(y;p) a multivariate Bernoulli distribution of parameter
p ∈ [0, 1]K , and σ(θ) a component-wise logistic transfor-
mation, i.e., σi(θ) = (1 + e−θi)−1. The observation model
of (3b) can be interpreted as a binary principle component
analysis (binary PCA) [23] of {yt}. Binary PCA is a di-
mensionality reduction technique for binary data. Given a
matrix Y =

[
y1, · · · ,yτ

]
∈ {0, 1}K×τ , it determines a

L-dimensional (L� K) embedding of the natural parame-
ters Θ of the Bernoulli distribution, by maximizing the log-
likelihood

L = log p(Y ; Θ) = log

[∏

k,t

σ(Θkt)
Yktσ(−Θkt)

1−Ykt

]
(4)

subject to the constraint

Θ = CX + u1T , (5)

where C ∈ RK×L, X =
[
x1, · · · ,xτ

]
∈ RL×τ , u ∈ RK

and 1 ∈ Rτ is the vector of all ones. Each column of C is
a basis vector of a latent subspace and the t-th column of
X contains the coordinates of the yt in this basis (up to a
translation by u).

Since, in the context of attribute representations, only the
the attribute scores πt (and not the attribute variables them-
selves) are known, [14] replaced the log-likelihood of (4)
by the expected log-likelihood

EY [L] =
∑

k,t

[
πkt log σ(Θkt) + (1− πkt) log σ(−Θkt)

]
. (6)

The maximization of (6) under the constraint of (5) can be
performed with an expectation-maximization (EM) -like it-
erative algorithm [23], which produces estimates of the pa-
rametersC,u and the latent sequenceX . [14] exploited this
to propose a BDS extension of the popular dynamic texture
algorithm for learning linear dynamic systems [5, 2]. Given
a sample Db = {yi}τi=1, this consists of learning the ob-
servation and state transition models in two steps. The first
is a binary PCA analysis of Db, to determine C, u, and



the coefficients {xt}. As shown in Figure 2, {xt} is a tra-
jectory in the state space, which follows a Gauss-Markov
process. The second step determines the matrix A that pro-
vides the least squares fit to these coefficients. Note that
this matrix characterizes the state space trajectory, which
is mapped (given C and u) into the video trajectory in S.
Hence, A depicts the dynamics of the attribute sequence.

3.3. Bag of Words for Attribute Dynamics

While substantially more descriptive than the holistic at-
tribute model of [15], the BDS of [14] still has two seri-
ous limitations as a model of video dynamics. These are
illustrated in Figure 1. First, there is, in general, no guar-
antee that the whole video sequence depicts the activity
of interest. On the contrary, the segments that matter for
event recognition (e.g., a segment of “tennis-serve”) are fre-
quently surrounded by segments that are not informative for
the recognition (e.g., video of subsequent plays). Fitting a
single dynamic model to long video sequences will lead to
parameter estimates that are not representative of the event
of interest. Second, since complex activities are composed
of several atomic actions, sometimes disjoint in time, their
state trajectories are unlikely to follow the Gauss-Markov
process. Both of these limitations, however, are unlikely to
hold if the BDS is fitted to a short-term video segment.

On the other hand, most activities can be effectively in-
ferred by a characterization of the short-term segments that
compose them. For example, the characterization of the
activity “long-jump” by the attribute sequence “run-run”,
“run-jump” and “jump-land”, is sufficient to discriminate
it from the (very similar) activity “triple-jump”, if the lat-
ter is characterized by the attribute sequence “run-jump”,
“jump-jump” and “jump-land”. The presence (or absence)
of a video segment with attributes “jump-jump” is sufficient
to discriminate between the two activities. Based on these
observations, we propose to model video with an extension
of the BoVW that captures the short-term dynamics of the
attribute representation of an action.

A video sequence is first split into a collection of tem-
poral overlapping segments {s(i)}Ni=1. Segment s(i) has τi
frames, which are fed to the attribute mapping of (7). This
produces a set of attribute score vectors Π(i) = {π(i)

t }τit=1,
which is denoted the attribute sequence of segment s(i).
The video sequence is finally represented by a bag of at-
tribute sequences (BoAS), which plays the role, in the pro-
posed framework, of the BoF in image classification. A dic-
tionary of representative BDS’s {Ω(i)}Vi=1, which are de-
noted words for attributes dynamics (WAD), learned from
a set of training BoAS, is then used to quantize the BoAS
extracted from the video sequence to classify. The resulting
histogram of WAD counts, denoted a bag of words for at-
tribute dynamics (BoWAD) is finally used as a feature vec-
tor for video classification. This representation is summa-

rized in Figure 3.

4. Learning and Recognition with BoWADs
In section 5 we will show that, when combined with stan-

dard histogram-based classifiers e.g., support vector ma-
chines (SVMs) with histogram intersection kernel (HIK),
BoWADs are a very effective representation for the recogni-
tion of complex activities. For now, we address the problem
of quantizing attribute sequences. We start with the problem
of learning a WAD dictionary.

4.1. Clustering Samples in the Model Domain

Traditional clustering (e.g., k-means) searches for proto-
types in the space of training samples (e.g., in k-means, a
cluster prototype is the centroid of the samples in the clus-
ter), using a metric suited for that space (e.g., Euclidean
distance). An extension to the clustering of BoAS is not
straightforward because 1) attribute sequences can have dif-
ferent length; 2) the space of these sequences has non-
Euclidean geometry; and 3) the search for optimal proto-
types, under this geometry, may lead to intractable non-
linear optimization. More importantly, because we are in-
terested in characterizing the appearance and dynamics of
attribute sequences, it is more desirable to find a set of pro-
totype BDS’s than a set of prototype sequences.

This becomes a problem of learning a bag-of-
models (BoM) where, given a set of training samples D =
{zi}Ni=1 (zi ∈ Z,∀i), the goal is to learn a dictionary of
representative models {Mi}NC

i=1 in a model space M. The
proposed solution is based on two mappings. The first

fM : Z ⊇ {zi} 7→M({zi}) ∈M (7)

maps a collection of examples {zi} ⊆ D into a model
M({zi}). The second,

M×M 3 (M1,M2) 7→ dM(M1,M2) ∈ R+ (8)

is a measure of distance between models. The mapping
of (7) is first used to produce a model M(zi) per train-
ing example zi. Training samples are then clustered, at
the model level, by alternating between two steps. In the
assignment step, each zi is assigned to the cluster whose
model is closest to M(zi), using the metric (8). In the
model refinement step, the model associated with each clus-
ter is relearned from the training samples assigned to it,
via (7). This procedure is summarized in Algorithm 1 and
denoted bag-of-models clustering (BMC).

BMC generalizes k-means, where zi ∈ Rd are feature
vectors,M is the family of Gaussians of identity covariance

M =
{
p(z;µ) = G(z;µ, Id) | µ ∈ Rd

}
, (9)

(7) selects the model

M({zi}) = G(z; µ̂, I), (10)
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Figure 3: BoWAD representation of the activity “diving-springboard”. (Top) video sequence. (Middle) the holistic vector of attribute
scores is now represented as a trajectory in the attribute space (which is four dimensional, in this example, and represented as four colored
functions). The trajectory is split into overlapping sort-term segments. (Bottom) each segment is assigned to the WAD associated with the
BDS, in a learned BDS dictionary, that best explains it. Dictionary BDS’s are models of short-term behaviors, such as “walk-walk-jump”,
“walk-jump-jump”, “jump-jump-somersault” and “jump-somersault-enter water”. The activity is represented by a BoWAD, which is a
histogram of assignments of segments to WADs.

Algorithm 1: Bag-of-Models Clustering

Input : a set of samples D = {zi}Ni=1 (zi ∈ Z,∀i),
number of clusters NC , an initial set of
models {M (0)

i }NC
i=1.

set t = 0 and S(0)
i = ∅, i = 1, · · · , NC ;

repeat
t = t+ 1;
Assignment-Step: ∀i, S(t)

i = {z ∈ D | ∀j 6= i,
dM(M(z),M

(t−1)
i ) 6 dM(M(z),M

(t−1)
j )}

Refinement-Step: ∀i, M (t)
i = M({S(t)

i })
until ∀i, S(t)

i = S
(t−1)
i ;

Output: {M (t)
i }NC

i=1 and {S(t)
i }NC

i=1

where µ̂ is the maximum likelihood estimate of the mean

µ̂ = argmax
µ

p({zi};µ) =
1

|{zi}|
∑

i
zi, (11)

and the measure of (8) is the (symmetric) Kullback-Leibler
divergence

KL(p1||p2) + KL(p2||p1) = ||µ1 − µ2||2. (12)

It should be noted that BMC (Algorithm 1) differs from
the bag-of-systems method of [20, 1] in two ways. First,
it clusters attribute sequences rather than the models them-
selves, as is done by [20, 1]. Note that, in the model refine-
ment step of Algorithm 1, models are re-learned from exam-
ples {zi}. The refinement step of [20, 1] only considers the
parameters of the models M(zi) and not the examples zi
themselves. This usually entails loss of information. Sec-
ond, Algorithm 1 finds the optimal representative for each
cluster, according to the model fitting criterion of (7). In

[20], the difficult geometry of the manifold defined by the
LDS parameter tuple (A,C) ∈ GL(n) × ST(p, n), where
GL(i) is the set of invertible matrices of size n and ST(p, n)
the Stiefel manifold of p×n orthonormal matrices (p > n),
precludes a simple estimate of the optimal representative.
Instead, this is approximated by searching for the model
M(zi) closest to the optimal representative. Although [1]
introduces an approach to directly cluster LDS’s in their pa-
rameter space, its generalization to the BDS is still not quite
clear. We will show, in Section 5, that these differences can
lead to significantly improved performance by Algorithm 1.

4.2. Learning a Vocabulary of WADs

A WAD dictionary is learned by applying Algorithm 1
to a BoAS P = {Π(i)}Ni=1, as follows.

Algorithm 2: Learning a Cluster for WADs Dictionary
Input : a set of n sequences of attribute score vectors

{{π(i)
t }τit=1}ni=1, state space dimension L.

Binary PCA:
{C,X,u} = B-PCA({{π(i)

t }τit=1}ni=1, L) [23].

Estimate state parameters:
A = X̂τ

2 (X̂τ−1
1 )

†
, V = X̂τ

2 −AX̂τ−1
1 ,

(where X̂τ
2 =

[
(X(1))τ12 , · · · , (X(n))τn2

]
,

X̂τ−1
1 =

[
(X(1))τ1−11 , · · · , (X(n))τn−11

]
,

and Xt2
t1 ≡

[
xt1 , · · · ,xt2

]
).

Q = 1∑
i(τi−1)

V (V )T , µ0 = 1
n

∑n
i=1 x

(i)
1 ,

S0 = 1
n−1

∑n
i=1(x

(i)
1 − µ0)(x

(i)
1 − µ0)T .

Output: Ω = {A,C,Q,u,µ0, S0}



Refinement-Step: The mapping of (7) amounts to fit-
ting a BDS to a BoAS P ′ = {Π(i)} ⊆ P . This is done
with recourse to Algorithm 2, which extends the algorithm
of [14] for learning a BDS from a single attribute sequence.
The extension follows the two-step decomposition of BDS
learning discussed in Section 3.2. A binary PCA is first
applied to all attribute score vectors in P ′. The parame-
ters of the hidden Gauss-Markov process are then learned
by solving a least squares problem involving all latent state
sequences returned by binary PCA. In this way, the BDS
learned per cluster jointly characterizes the appearance and
dynamics of all attribute sequences in that cluster.

Assignment-Step: As a measure of distance between
two BDS’s, we use the Binet-Cauchy (BC) kernel. This was
originally proposed in [25] as a measure of dissimilarity be-
tween infinite output sequences of two LDS’s, and adapted
to a measure of the dissimilarity between the outputs of two
BDS’s, Ωa and Ωb, in [14]. It is defined as

dBC(Ωa,Ωb)

= Ev

[ ∞∑
t=0

e−λt
(
KL(B(σ(θ

(a)
t ))||B(σ(θ

(b)
t )))

+KL(B(σ(θ
(b)
t ))||B(σ(θ

(a)
t )))

)]
= Ev

[ ∞∑
t=0

e−λt
(
σ(θ

(a)
t )− σ(θ(b)

t )
)T (

θ
(a)
t − θ

(b)
t

) ]
,

(13)

where {σ(θ
(a)
t )} and {σ(θ

(b)
t )} are the parameters of the

multivariate Bernoulli distributions from which the binary
attribute vectors are sampled, for the two BDS’s. While the
BC kernel between two LDS’s can be computed in closed
form, the evaluation of (13) is not trivial. Like the latent
state sequence {xt}, its linear projection {θt} is a sample
from a high-dimensional Gaussian distribution. Hence, (13)
amounts to computing the expectation of a nonlinear func-
tion with respect to a multivariate Gaussian distribution, and
is intractable in general. Following [14], we resort to a nu-
meric solution which approximates the summation by a fi-
nite number of terms. This has been empirically shown to
produce good results.

4.3. Quantization

Given a WAD dictionary {Ω(i)}Vi=1, a BoAS
{{π(i)

t }τit=1}Ni=1 is quantized by assigning the i-th at-
tribute sequence to the k∗-th cluster according to

k∗ = argminj dBC
(
Ω({π(i)

t }τit=1),Ω(j)), (14)

where Ω({π(i)
t }τit=1) is the BDS learnt from {π(i)

t }τit=1 us-
ing (7).

5. Experiments
A number of experiments were performed to compare

the BoWAD representation to previous models of temporal

Table 1: Classification Accuracy on Weizmann Activity

Sets BoF
BoF-TP

[11]

Attri-
bute
[15]

BDS
[14]

BoWAD

MDS-kM
[20]

BMC

Syn20×1 23.3% 36.7% 17.8% 64.4% 100% 100%
Syn10×2 28.9% 31.1% 16.7% 65.6% 98.9% 100%

activity structure. The low-level representation used in all
experiments was the BoF of [11]. A set of spatio-temporal
interest points (STIPs) were first detected, a feature vec-
tor was extracted from the support of each interest point,
and quantized into a vocabulary learnt from the training set.
Binary SVMs using histogram intersection kernel (HIK)
with probability outputs [3] were used as attribute models,
learned from annotated training video clips (see supplemen-
tary material for attribue definitions). In all experiments,
both BDS’s and BoWADs used a 5-dimensional state space.

5.1. Weizmann Activity

The first set of experiments was based on composite se-
quences synthesized from the Weizmann dataset [8], which
contains 10 atomic action classes, performed by 9 people,
for a total of 90 samples. BoWAD was compared to the
vanilla BoF, BoF with t3 temporal pyramids [11] (denoted
“BoF-TP”), holistic attributes [15] (denoted “Attribute”)
and BDS [14]. Attribute sequences were computed over 30-
frame sliding video windows of 10-frame step. As in [14],
30 low-level attributes were defined for the original 10 ac-
tions. To compute BoWADs, each short-term attribute se-
quence consisted of the attribute vectors from 12 consecu-
tive windows, extracted with a step of 3 windows. WAD
dictionaries were learned with both BMC and the MDS-kM
algorithm of [20] . One-v.s.-all SVMs with HIK were used
in all histogram-based methods (BoF, BoF-TP, BoWAD, at-
tribute models), where STIP features used a 1000-word vo-
cabulary. For the BDS, we used the kernel K(Ωa,Ωb) =
exp(− 1

γ d
2
BC(Ωa,Ωb)) (same for the rest of experiments).

Two datasets were created. The first, “Syn20×1”, aimed
to test the ability of the different approaches to detect activ-
ity classes of large variability. An activity was defined as a
sequence of 20 consecutive atomic actions from Weizmann.
This sequence was inserted at a random temporal location
of a larger sequence of 40 atomic actions. The remaining 20
actions in the larger sequence were randomly selected from
Weizmann. The second, “Syn10×2”, tested the ability of
the different approaches to detect discontinuous activities.
In this case, each activity was defined by two subsequences,
each with 10 consecutive atomic actions. The two subse-
quences were randomly inserted at non-overlapping loca-
tions of the larger (40 atomic actions) sequence.

Table 1 summarizes the performance of the different
methods. The very weak performance of BoF, BoF-TP, and



Table 2: Average Precisions for Activity Recognition on Olympic Sports Dataset.

Activity
Laptev

et al. [11]
(BoF-TP)

Niebles
et al.
[16]

Tang
et al.
[24]

Attri-
bute
[15]

BDS
[14]

BoWAD

MDS-kM
[20] BMC

high-jump 52.4% 68.9% 18.4% 93.2% 82.2% 86.8% 83.9%
long-jump 66.8% 74.8% 81.8% 82.6% 92.5% 83.9% 91.9%
triple-jump 36.1% 52.3% 16.1% 48.3% 52.1% 64.2% 75.7%
pole-vault 47.8% 82.0% 84.9% 74.4% 79.4% 68.0% 76.5%
gym. vault 88.6% 86.1% 85.7% 86.7% 83.4% 86.7% 91.4%

shot-put 56.2% 62.1% 43.3% 76.2% 70.3% 58.0% 79.4%
snatch 41.8% 69.2% 88.6% 71.6% 72.7% 56.4% 73.4%

clean-jerk 83.2% 84.1% 78.2% 79.4% 85.1% 78.2% 85.4%
javelin throw 61.1% 74.6% 79.5% 62.1% 87.5% 56.6% 76.7%
ham. throw 65.1% 77.5% 70.5% 65.5% 74.0% 71.3% 79.2%
discus throw 37.4% 58.5% 48.9% 68.9% 57.0% 62.6% 66.9%
diving-plat. 91.5% 87.2% 93.7% 77.5% 86.0% 85.2% 82.0%

diving-sp. bd. 80.7% 77.2% 79.3% 65.2% 78.3% 75.2% 82.3%
bask. layup 75.8% 77.9% 85.5% 66.7% 78.1% 66.6% 60.8%

bowling 66.7% 72.7% 64.3% 72.0% 52.5% 64.4% 73.0%
tennis-serve 39.6% 49.1% 49.6% 55.2% 38.7% 68.1% 73.2%

mean AP 62.0% 72.1% 66.8% 71.6% 73.2% 70.8% 78.2%
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Figure 4: Mean average precision (mAP)
v.s. size of BDS dictionary on Olympic
Sports. Vertical bars indicate standard devi-
ation of mAP in cross-validation.

Attribute, show that modeling of activity dynamics is criti-
cal for success in these datasets. While the BDS has sub-
stantially improved performance, the underlying assump-
tion of a single dynamic process is a limitation for these
sequences, where the activities of interest are not tempo-
rally aligned and are surrounded by irrelevant video. Sub-
stantially better performance is achieved with the BoWAD
representation, which has perfect performance on these
datasets. Both clustering strategies achieve good results, al-
though BMC outperforms MDS-kM slightly.

5.2. Olympic Sports

The second set of experiment was conducted on the
Olympic Sports dataset [16]. The performance of BoWADs,
learned with BMC and MDS-kM, was compared to BoF-
TP [11], activity models with decomposable segments [16],
the hidden Markov model with latent states of variable du-
ration of [24], the holistic attribute representation of [15],
and the BDS [14]. In all cases, a 3000-word STIP vocab-
ulary was used to quantize low-level features. BDS’s and
BoWAD used the 40 attributes defined by [15]. A 30 frame
sliding video window, with a step of 4 frames, was used
to compute attribute scores. For the BoWAD, attribute se-
quences consisted of 12 consecutive attribute vectors, with a
75% overlap between consecutive sequences. Performance
was measured with per-category average precisions (AP)
and mean AP, using 5-fold cross-validation.

As shown in Table 2, the BoWAD again achieves the best
results. In fact, it achieves the best results reported in the
literature with the similar low-level features (STIP) on this
dataset. This includes methods based on much more sophis-
ticated classifiers, such as the 74.4% of [15] or the 76.5%
of [14], which use latent SVMs or multiple kernel classifiers
to combine supervised, unsupervised attributes (dynamics),

and low-level features. The BoWAD achieves 78.2% by
simply quantizing attribute dynamics. It works particu-
larly well for categories, such as “tennis-serve”, which have
large variability and tend to include video irrelevant for ac-
tivity detection, or category pairs, such as “triple-jump”
and “long-jump”, that differ in subtle ways. The robust-
ness inherent to a vocabulary of dynamics is critical for
the former (compare the 73.2% of BoWAD-BMC with the
38.7% of the BDS on “tennis serve”), while the detailed
characterization of attribute dynamics is critical for the lat-
ter (75.7% v.s. 48.3% of Attribute on “triple-jump”). With
regards to clustering algorithms, there is now a substantial
gap between MDS-kM (70.8%) and BMC (78.2%). Fig-
ure 4 shows that this difference holds across a large range
of WAD dictionary sizes. The robustness of the proposed
representation is reinforced by the fact that a 320-word
BoWAD has mAP (75%) superior to all other representa-
tions of Table 2.

5.3. TRECVID-MED11

The third set of experiments used the 2011 TRECVID
multimedia event detection (MED) open source
dataset [17]. The event collection (EC) set was used
for training and the development set (DEVT) for testing
(events 1-5). EC contains 2,062 training samples of 5
high-level events, with 100-200 positive examples per
event. DEVT has around 11,000 samples. We manually
defined 93 attributes and used a 10,000-word low-level
feature dictionary. Attribute scores were computed with
a 180-frame sliding window with steps of 30 frames, and
attribute sub-sequences (τ = 10) were extracted every
window. BoWAD used a dictionary of size 1000.

The performance of the different methods is summa-
rized in Table 3. On this highly challenging dataset, the



Table 3: Average Precision for Event Detection on TRECVID MED11 DEVT Dataset.

Event
(E001-E005)

Random
Guess

Laptev et al.
[11] (BoF-TP)

Niebles et al.
[16]

Tang et al. [24]
(d = 1 / d 6 dmax)

Attribute
[15]

BDS
[14]

BoWAD

MDS-kM [20] BMC

attempting a board trick 1.18% 8.22% 5.84% 6.24% / 15.44% 18.91% 8.41% 26.62% 29.99%
feeding an animal 1.06% 2.54% 2.28% 5.28% / 3.55% 4.95% 1.78% 4.61% 7.36%

landing a fish 0.89% 9.77% 9.18% 7.30% / 14.02% 24.17% 6.20% 24.97% 28.10%
wedding ceremony 0.86% 5.52% 7.26% 9.48% / 15.09% 16.68% 12.24% 22.15% 22.39%

working on a wood project 0.93% 4.09% 4.05% 3.42% / 8.17% 5.11% 5.08% 12.39% 18.32%
mean AP 0.98% 6.01% 5.72% 6.34% / 11.25% 13.96% 6.74% 18.15% 21.23%

gap between BoWAD and the other representations is enor-
mous. In fact, the BoWAD learned by BMC (21.23%) al-
most doubles the best previous results in the literature that
model temporal structure of complex events (i.e., 11.25%
of [24]). The fact that the BoWAD substantially outper-
forms the BDS also confirms the observation that the ro-
bustness of a vocabulary of local attribute dynamics is crit-
ical for accurate detection of complex activities. For exam-
ple, events in the class “attempting a board trick” include a
repetition of local actions, e.g., “slide-jump-(somersault)-
land-slide”. While it is difficult to model this sequence
as a whole, due the large variability of cutting in different
videos, it is much easier to capture short-term signature ac-
tions, such as “slide-jump”, which are usually not broken
during video editing. Finally, with respect to clustering al-
gorithms, BMC agains substantially outperforms MDS-kM.

6. Conclusion
In this work, we proposed a novel solution to the prob-

lem of modeling attribute and dynamics for activity recog-
nition. The method combines the advantages, in terms
of robustness, of histogram-based representations, with the
power of BDS’s to model the dynamics of video attributes.
We developed new algorithms for learning BDS dictionar-
ies and quantizing video with them. The proposed rep-
resentation significantly outperforms other state-of-the-art
attribute-based or temporal-structure-modeling approaches
in complex activity recognition.
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