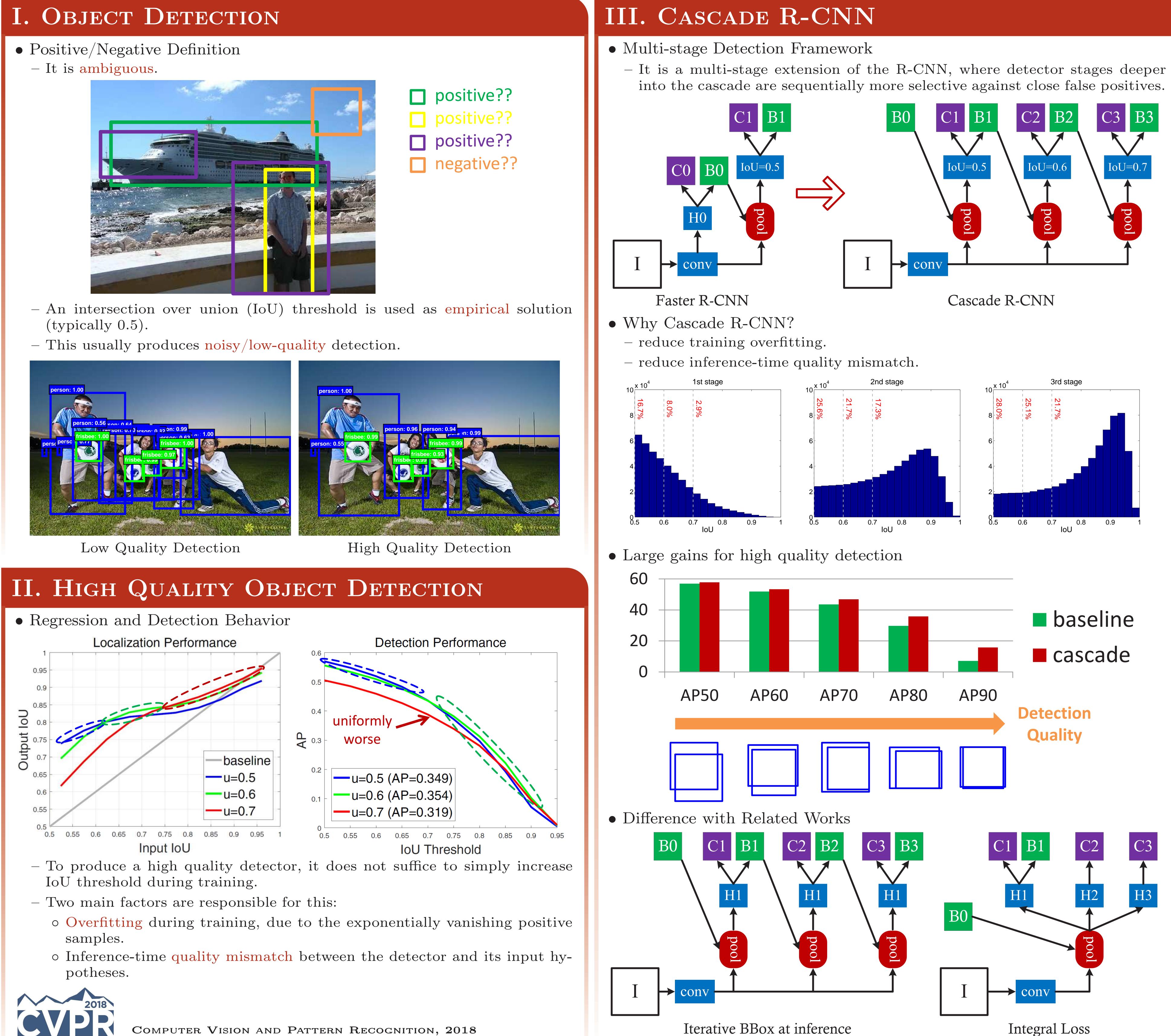

CASCADE R-CNN: DELVING INTO HIGH QUALITY OBJECT DETECTION Zhaowei Cai Nuno Vasconcelos



(typically 0.5).

• Regression and Detection Behavior

University of California San Diego, Statistical Visual Computing Laboratory

IV. EXPERIMENTAL RESULTS

Comparison wit	h related	d wor	cks						
		AP	AP_{50}	AP_6	0 AP	70 AP	80 AI	P90	
FPN+b	FPN+ baseline		9 57.0	51.9) 43.	6 29.	7 7	.1	
Iterative BBox 3		35.4	4 57.2	52.1	44.	2 30.	4 8	5.1	
Integral Loss 3									
Cascade R-CNN 3		38.9	9 57.8	53.4	4 46.	9 35.	8 15	5.8	
Comparison wit		1	I						
back		kbon	e	AP	AP_{50}	AP ₇₅	$ AP_S $	AP_M	AP_L
RetinaNet	Res	Net-	101	39.1	59.1	42.3	21.8	42.7	50.2
FPN	Res	Net-	101	36.2	59.1	39.0	18.2	39.0	48.2
G-RMI In-Res			et-v2	34.7	55.5	36.7	13.5	38.1	52.0
Deformable R-FCN Algn-In-I			ResNet	37.5	58.0	40.8	19.4	40.1	52.5
Mask R-CNN ResNe		Net-	101	38.2	60.3	41.7	20.1	41.1	50.2
Cascade R-CNN ResNet			101	42.8	62.1	46.3	23.7	45.5	55.2
Generalization on multiple detectors and backbone networks									
		_	cascade						AP_L
Faster R-CNN	VGG		X	23.5	43.9	22.6	8.1	25.1	34.7
raster re-Ornin				26.9	44.3	27.8	8.3	28.2	41.1
R-FCN	RogNot	50	X	27.1	49.0	26.9	10.4	29.7	39.2
	ResNet-50			30.9	49.9	32.6	10.5	33.1	46.9
R-FCN	ResNet-101		X	30.5	52.9	31.2	12.0	33.9	43.8
	Resnet-			33.3	52.6	35.2	12.1	36.2	49.3
FPN+	ResNet-50		×	36.5	59.0	39.2	20.3	38.8	46.4
	IVESINEL	-00		40.6	59.9	44.0	22.6	42.7	52.1
FPN+	ResNet-101		X	38.8	61.1	41.9	21.3	41.8	49.8
				42.8	62.1	46.3	23.7	45.5	55.2
Generalization of	on VOC	.							

• Generalization on VOC

	Faster R-CNN				R-FCN				
backbone	Alex	Net	✓ X		RetN	et-50	RetNet-101		
cascade	X		X	\checkmark	X		X		
AP	29.4	38.9	42.9	51.2	44.8	51.8	49.4	54.2	
AP_{50}	63.2	66.5	76.4	79.1	77.5	78.5	79.8	79.6	
AP_{75}	23.7	40.5	44.1	56.3	46.8	57.1	53.2	59.2	

• Reproducible research

V. CONCLUSIONS

- Cascade R-CNN
 - work;

- https://github.com/zhaoweicai/cascade-rcnn

- is an effective high quality object detector;

- is well motivated from experimental observations;

- achieves the state-of-the-art single-model results on COCO, and can be well generalized on other datasets, e.g. VOC;

- can be built with any two-stage object detector based on the R-CNN frame-

– enables consistent gains on multiple baseline detectors with multiple backbone networks, and the gain is independent of the baseline strength; - is quite simple to implement and reproducible on multiple codebase.

