
Supplementary Material:
Solving Long-tailed Recognition with Deep

Realistic Taxonomic Classifier

Tz-Ying Wu, Pedro Morgado, Pei Wang, Chih-Hui Ho, and Nuno Vasconcelos

University of California, San Diego
{tzw001, pmaravil, pew062, chh279, nvasconcelos}@ucsd.edu

A Dataset details

While CIFAR100-LT, ImageNet-LT and iNaturalist (2018) are acquired from
referenced papers [1,14,33,46], we curated AWA2-LT and iNaturalist-sub. AWA2-
LT contains 25,622 training images and 3,000 test images. The training set is
curated for imbalanced factor 0.01 (see Figure 1 (a)) and the test set is balanced.
iNaturalist-sub is sampled from each class of the full iNaturalist dataset, with
similar distribution, as shown in Figure 1 (b)-(c). Note that each class contains
at least one image after subsampling.

B Details of baseline hierarchical classifiers

Four different hierarchical classifiers are evaluated and compared using the same
backbone as Deep-RTC. CNN-RNN [28] uses the CNN as the feature extractor
and an LSTM as the classifier to sequentially predict the label at each level of
the hierarchy. B-CNN [64] adds convolutional branches at intermediate CNN
layers for coarser level predictions, equating the output of the last layer to the
leaf level predictions. During training, the loss is initially heavier for the coarse
level predictions and then the weight gradually shifts to the leaf level loss. The
top-down inference is adopted for the two-level CIFAR100-LT dataset. NofE [2]
uses coarse level labels in a first stage and fine-grained level labels in a second

sorted class index
0

200

400

600

800

1000

1200

1400

1600

nu
m
be

r o
f s

am
pl
es

(a) AWA2-LT

sorted class index
0

20

40

60

80

100

nu
m
be

r o
f s

am
pl
es

(b) iNaturalist-sub

sorted class index
0

200

400

600

800

1000

nu
m
be

r o
f s

am
pl
es

(c) iNaturalist
Fig. 1: Data distribution of 3 different datasets. X-axis is the sorted class index and
y-axis is the number of training samples in each class. iNaturalist-sub remains similar
distribution as iNaturalist.



2 T.Y. Wu et al.

stage. The second stage model is pre-trained with the first stage model and adds
convolutional branches for each of the coarse labels. Since the original B-CNN
and NofE networks are not designed for multi-level hierarchies, such as those of
AWA2-LT and ImageNet-LT, we adopt labels of level 2 and 4 as coarse labels for
these two datasets respectively. The bottom-up inference is adopted at test time
for these two datasets. HND [43] uses a KL-Divergence to enforce a uniform
distribution over the predictions of nodes outside of the ground truth path. Top-
down inference is adopted in this experiment. For all methods, the competence
level γ is selected on the validation set and applied to the test set.

C Implementation details

CIFAR100-LT We follow the setting of [14], training the proposed model for
200 epochs with the initial learning rate of 0.1 and batch size 128 with learning
rate warm-up in the first 5 epochs. We used stochastic gradient descent with
momentum 0.9 and weight decay 0.0005. The learning rate is decayed by a factor
of 10 at epochs 160 and 180.
iNaturalist We train the model with batch size 128 with the initial learning
rate 0.01. Following [38], we train for 200 epochs with the learning rate decayed
by a factor of 10 after 100 epochs. Stochastic gradient descent with momentum
0.9 and weight decay 0.0001 is used to optimize this network.
AWA2-LT and ImageNet-LT We train for 120 and 90 epochs with initial
learning rates 0.01 and 0.1 respectively, which are decayed by a factor of 10
every 40 and 30 epoch respectively.

We keep a small portion of the training data as the validation set to select
hyperparameters, which is uniformly distributed similar to testing data. λ is
set to 0.5 for iNaturalist and AWA2-LT, and λ is 1 for the other two datasets.
Stochastic tree sampling is implemented with a dropout layer with the dropout
rate of p = 0.2 for iNaturalist and CIFAR100-LT, and p = 0.1 for ImageNet-LT
and AWA2-LT.

D Comparison to long-tail recognizers on CIFAR100-LT
and AWA2-LT

Table 1 presents additional CPB results on CIFAR100-LT and AWA2-LT. Com-
paring to other representative long-tail recognizers, Deep-RTC achieves the high-
est CPB on both datasets. We also highlight that the performance gain of Deep-
RTC increases with the dataset difficulty and the classification ability at each
level. When the classification is easy (e.g. AWA2-LT), it can be done mostly at
the leaves (leaf acc. is 89.4%), so there is little benefit exiting earlier in the tree.
However, when the dataset is complex, the gains are significant. For example, the
leaf acc. and hier. acc. for ImageNet-LT are 29.8% and 84.5% respectively. Hence,
Deep-RTC only classifies 9.6% of samples to leaf level, but provides coarser pre-
dictions for most samples, which results in 11% gain in CPB. For CIFAR100-LT,



Supplementary Material: Deep Realistic Taxonomic Classifier 3

Table 1: Comparison to long-tail recognizers on CIFAR100-LT and AWA2-LT (CPB).

Method CIFAR100-LT AWA2-LT

Softmax .381 .889
CBLoss [14] .382 .890
Focal Loss [44] .380 .885
LDAM [7] .382 .880

Deep-RTC .397 .894

Table 2: Convergence analysis.

percent of l0 − l∞ 0.2 0.4 0.7 0.9 0.999 1

CIFAR100-LT 6/6 12/12 42/40 161/161 187/189 200/200
AWA2-LT 2/2 3/3 7/8 19/26 99/103 120/120
ImageNet-LT 4/3 11/6 34/32 63/61 88/88 90/90

leaf acc. (39.5%) and hier. acc. (49.9%) are both low, so the information can be
recovered correctly by exiting earlier is limited.

E Convergence analysis of stochastic tree sampling (STS)

Stochastic tree sampling (STS) has multiple roles in this paper. On one hand,
STS regularizes the embedding, encouraging the embedding of an example to be
close to the weight vectors of all its parent nodes. On the other, STS calibrates
the probability of all possible classification heads, enabling more precise proba-
bility estimates at inference time, where different classification heads can consist
of nodes from different tree heights.

We further discuss the convergence speed of the model with and without
STS with the same number of training iterations. Table 2 presents the number of
epochs needed for convergence. For each method, we compute the loss decrement
between the initial and final losses (i.e. d = l0−l∞), and list the number of epochs
needed to achieve certain percentages of decrement. For example, a percentage
of 0.2 means a loss value of l0 − d ∗ 0.2; at the end of the training, the ratio is
1. In each column, the first value is the number of epochs needed for the model
without STS, and the second one is for the model with STS. This comparison
shows that the proposed method does not converge slower in practice.


