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Abstract

Visual saliency has been shown to depend on the unpre-
dictability of the visual stimulus given its surround. Var-
ious previous works have advocated the equivalence be-
tween stimulus saliency and uncompressibility. We pro-
pose a direct measure of this quantity, namely the number
of bits required by an optimal video compressor to encode
a given video patch, and show that features derived from
this measure are highly predictive of eye fixations. To ac-
count for global saliency effects, these are embedded in a
Markov random field model. The resulting saliency mea-
sure is shown to achieve state-of-the-art accuracy for the
prediction of fixations, at a very low computational cost.
Since most modern cameras incorporate video encoders,
this paves the way for in-camera saliency estimation, which
could be useful in a variety of computer vision applications.

1. Introduction
Visual attention mechanisms play an important role in

the ability of biological vision to quickly parse complex
scenes, as well as their robustness to scene clutter. In hu-
mans, attention is driven by both the visual stimuli that com-
pose the scene and observer biases that derive from high-
level perception. Recently, there has been substantial inter-
est in the modeling of attention mechanisms in computer
vision. Most of these efforts have addressed the stimu-
lus driven component, typically through the development of
models of visual saliency. While some work has attempted
to model the influence of perceptual cues in the saliency
process, most works have addressed what is usually defined
as bottom-up or purely stimulus driven saliency. This has
long been believed to be implemented in the early stages of
vision, via the projection of the visual stimulus along the
features computed by the early stages of visual cortex, and
to consist of a center-surround operation. In general, re-
gions of the field of view that are distinctive compared to
their surroundings attract attention [9].

A considerable research effort has recently been devoted
to the development of computational models of saliency.
Early approaches pursued a circuit driven view of the
center-surround operation, modeling saliency as the result
of center-surround filters and normalization [26]. Under
these models, saliency is computed by a network of neu-
rons, where a stimulus similar to its surround suppresses
neural responses, resulting in low saliency, while a stim-
ulus that differs from its surround is excitatory, leading
to high saliency values. More recently, several works
have tried to identify general computational principles for
saliency, also applicable to the development of other classes
of saliency mechanisms, such as those responsible for top-
down saliency effects, or even broader perception [11, 25,
15, 47, 20].

A particularly fruitful line of research has been to con-
nect saliency to probabilistic inference. This draws on a
long established view, in cognitive science, of the brain as
a probabilistic inference engine [28], tuned to the visual
statistics of the natural world [4, 5, 6, 49]. In the cogni-
tive science literature, it has long been proposed that the
brain operates as a universal compression device [5], where
each layer eliminates as much signal redundancy as possi-
ble from its input, while preserving all the information nec-
essary for scene perception. This principle is at the root of
many posterior developments in signal processing and com-
puter vision, such as wavelet theory [36], the now widely
popular use of sparse representations [42], and, more re-
cently, compression based models of saliency.

These models can be divided into two main classes. A
first class of approaches models saliency as a measure of
stimulus information. For example, [11, 57, 41] advocate an
information maximization view of visual attention, where
the saliency of the stimulus at an image location is measured
by the self-information [12] of that stimulus, under the dis-
tribution of feature responses throughout the visual field. If
feature responses at the location have low probability under
this distribution, self-information is high and the location
considered salient. Otherwise, the stimulus is not salient.
[25] proposes a similar idea, denoted Bayesian surprise,
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which equates saliency to the divergence between a prior
feature distribution, collected from surround, and a poste-
rior distribution, computed after observation of feature re-
sponses in the center. A second class of approaches equates
saliency to a measure of signal compressibility. This con-
sists of producing, at each location, a compressed repre-
sentation of the stimulus, through a principal component
analysis [22, 37, 16], wavelet [46], or sparse decomposi-
tion [23, 31] , and measuring the error of stimulus recon-
struction from this compressed representation. Incompress-
ible image locations, which produce large reconstruction er-
ror, are then considered salient.

In parallel to these conceptual developments, there has
also been an emphasis on performance evaluation of differ-
ent approaches to saliency [10]. These efforts have shown
that saliency models based on the compression principle
tend to make accurate predictions of eye fixation data. In
fact, several of these models predict saliency with accuracy
close to the probability of agreement of human eye fixa-
tions. It could thus be claimed that “the bottom-up saliency
problem is solved.” There are, nevertheless, three main
problems with the current state-of-the-art. First, while it
is true that high accuracy has been extensively documented
for image saliency, the same is not true for video, which has
been the subject of much less attention. Second, while many
implementations of the “saliency as compression” principle
have been proposed, much smaller attention has been de-
voted to implementation complexity. This is of critical im-
portance for many applications of saliency, such as anomaly
detection [35] or background subtraction [50] in large cam-
era networks. For such applications, the saliency opera-
tion should ideally be performed in the cameras themselves,
which would only consume the power and bandwidth neces-
sary to transmit video when faced with salient or anomalous
events. This, however, requires highly efficient saliency al-
gorithms. Finally, while many implementations of the com-
pression principle have been proposed for saliency, none
has really used a direct measure of compression efficiency.
From a scientific point of view, this weakens the arguments
in support of the principle.

These observations have motivated us to investigate an
alternative measure of saliency, directly tied to compres-
sion efficiency. The central idea is that there is no need to
define new indirect measures of compressibility, since a di-
rect measure is available at the output of any modern video
compressor. In fact, due to the extraordinary amount of re-
search in video compression over the last decades, mod-
ern video compression systems operate close to the rate-
distortion bounds. It follows that the number of bits pro-
duced by a modern video codec is a fairly accurate measure
of the compressibility of the video being processed. In fact,
because modern codecs work very hard to assign bits effi-
ciently to different locations of the visual field, the spatial

distribution of bits can be seen as a saliency measure, which
directly implements the compressibility principle. Under
this view, regions that require more bits to compress are
more salient, while regions that require fewer bits are less.

We formalize this idea by proposing the operational
block description length (OBDL) as a measure of saliency.
The OBDL is the minimum number of bits required to com-
press a given block of video data under a certain distortion
criterion. This saliency measure addresses the three main
limitations of the state of the art. First, it is a direct mea-
sure of stimulus compressibility, namely “how many bits
it takes to compress.” By leveraging extensive research in
video compression, this is a far more accurate measure of
compressibility than previous proposals, such as surprise,
mutual information, or reconstruction error. Second, it is
equally easy to apply to images and video. For example, it
does not require weighting the contributions of spatial and
temporal errors, as the video encoder already uses motion
estimation and compensation, and performs rate-distortion
optimized bit assignments. Finally, because most modern
cameras already contain an on-chip video compressor, it has
trivial complexity for most computer vision applications. In
fact, it only requires partial decoding of the compressed bit
stream, namely the amount of decoding required to deter-
mine the number of bits assigned to each image region.

We propose an implementation of the OBDL measure,
and show that saliency can be encoded with a simple fea-
ture derived from it. However, while video compression
systems produce very effective measures of compressibil-
ity, this measure is strictly local, since all processing is re-
stricted to image blocks. Saliency, on the other hand, has
both a local and global component, e.g. saliency maps are
usually smooth. To account for this property we embed the
OBDL features in a Markov random field (MRF). Extensive
experiments show that the resulting OBDL-MRF saliency
measure has excellent accuracy for the prediction of eye fix-
ations in dynamics scenes.

2. Related work
The overwhelming majority of existing saliency mod-

els operate on raw pixels, rather than compressed images
or video. An excellent review of the state of the art is
given in [9, 10]. Nevertheless, some previous works have
attempted to make use of compressed video data, such
as motion vectors (MVs), block coding modes, motion-
compensated prediction residuals, or their transform coeffi-
cients, in saliency modeling [33, 2, 32, 40, 14]. This is typi-
cally done for efficiency reasons, i.e., to avoid recomputing
information already present in the compressed bitstream.
The extracted data is a proxy for many of the features fre-
quently used in saliency modeling. For example, the MV
field is an approximation to optical flow, while block cod-
ing modes and prediction residuals are indicative of motion



complexity. Furthermore, the extraction of these features
only requires partial decoding of the compressed video file,
the recovery of actual pixel values is not necessary.

Our approach is quite different from the majority of these
methods, most of which do not even explicitly equate stim-
ulus saliency to compressibility. On the contrary, we pur-
sue the compressibility principle to the limit, proposing to
measure saliency with a compressibility score that has not
been previously used in the literature. This score, denoted
the operational block description length (OBDL), is the to-
tal number of bits spent on the encoding of a block of video
data. This leverages the fact that modern video compressors
encode blocks differentially. A block of image pixels is first
predicted from either its temporal (neighboring frames) or
spatial (neighboring blocks) surround. The prediction resid-
ual is then compressed, using a combination of quantization
and entropy coding, and transmitted. When both prediction
operations are ineffective, the process results in large pre-
diction residuals and the block requires more bits to com-
press. By measuring this number of bits, the OBDL is an
indicator of the predictability of the block.

The OBDL also generalizes many of the previously pro-
posed compression-based measures of saliency. For exam-
ple, the representation of a block into a series frequency
discrete cosine transform (DCT) coefficients resembles the
subspace [22, 16, 37], sparse [23, 31] or independent com-
ponent [11] decompositions at the core of various saliency
measures, the differential encoding of DCT coefficients, by
subtracting the values of neighboring blocks, resembles the
center-surround operations of [26], and the encoding of mo-
tion compensated residuals resembles the surprise mecha-
nism of [25]. In fact, given the well known convergence
of modern entropy coders to the entropy rate of the source
being compressed

H =
1

n

∑
i

log
1

p(xi)
, (1)

where p(x) is the probability of symbol x, the number of
bits produced by the entropy coder is a measure of the self
information of each block. Hence, a video compressor is a
very sophisticated implementation of the saliency principle
of [11], which evaluates saliency as

S(x) = log
1

p(x)
. (2)

While [11] proposes a simple independent component anal-
ysis to extract features x from the image pixels, the video
compressor performs a sequence of operations involving
motion compensated prediction, DCT transform of the
residuals, predictive coding of DCT coefficients, quantiza-
tion, and entropy coding, all within a rate-distortion opti-
mization framework.

This results in a much more accurate measure of infor-
mation and, moreover, is much simpler to obtain in prac-
tice, given the widespread availability of video codecs.
The proposed OBDL is even simpler to extract from com-
pressed bitstreams than the other forms of compressed-
domain information mentioned above, because the recov-
ery of MVs or residuals is not required. Overall, the
OBDL combines the accuracy of the non-compressed do-
main saliency measures with the computational efficiency
of their compressed-domain counterparts.

3. Features derived from OBDL
In this section we introduce the OBDL and provide some

evidence for its ability to predict eye fixations.

3.1. The OBDL

Typical video compression consists of motion estima-
tion and motion-compensated prediction, followed by intra-
prediction, transformation, quantization and entropy coding
of prediction residuals and motion vectors. Most of these
steps have been in place since the earliest video coding
standards, albeit becoming more sophisticated over time.
While, for concreteness, we focus on the H.264/AVC cod-
ing standard [56], the feature computations proposed here
can be adjusted to other video coding standards, including
the latest high efficiency video coding (HEVC) [51]. Due
to the focus on H.264/AVC, our “block” is a 16 × 16-pixel
macroblock, abbreviated MB.

The OBDL is computed directly from the output of the
entropy decoder, which is the first processing block in a
video decoder. No further decoding of the compressed bit-
stream is needed. The number of bits spent on encoding
each MB is extracted and mapped to the unit interval [0, 1],
where the value of 0 is assigned to the MB(s) requiring
the least bits to code and the value of 1 is assigned to the
MB(s) requiring the most bits to code, among all MBs in
the frame. The normalized OBDL map is smoothed by con-
volution with a 2D Gaussian of standard deviation equal to
2◦ of visual angle. Although the spatially smoothed OBDL
map is already a solid saliency measure, we observed that
an additional improvement in the accuracy of saliency pre-
dictions is possible by performing further temporal smooth-
ing. This conforms with what is known about biological
vision [3, 1, 39], where temporal filtering is known to occur
in the earliest layers of visual cortex. Specifically, we apply
a simple causal temporal averaging over 100 ms to obtain a
feature derived from the OBDL.

3.2. Prediction of eye fixations

We have performed some preliminary experiments to
compare the statistics of the OBDL feature at human fix-
ation points and non-attended locations, in video. These
experiments were based on the protocol of Reinagel and
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Figure 1. Scatter plots of the pairs (control sample mean, test sam-
ple mean) in each frame for OBDL-derived feature. Dots above
the diagonal show that feature values at fixation points are higher
than at randomly selected points.

Zador [45], who performed an analogous analysis for spa-
tial contrast and local pixel correlation, in natural images.
Their analysis compared fixation to random points of still
images, showing that, on average, spatial contrast is higher
and local pixel correlation lower around fixation points.

We follow the same protocol, using two eye-tracking
datasets, DIEM [38] and SFU [18], which contain fixa-
tion points of human observers on video clips. Each video
was encoded in the H.264/AVC format using the FFM-
PEG library (www.ffmpeg.org) with a quantization param-
eter (QP) of 30 1/4-pixel motion vector accuracy with no
range restriction, and up to four motion vectors per MB. In
each frame, feature values at fixation points were selected as
the test sample, while feature values at non-fixation points
were used as the control sample. The latter was obtained
by applying a nonparametric bootstrapping technique [13]
to all non-fixation points of the video frame. Control points
were sampled with replacement, multiple times, with sam-
ple size equal to the number of fixation points. The average
of the feature values over all bootstrap samples was taken
as the control sample mean.

Fig. 1 presents pairs of (control sample mean, test sam-
ple mean) values for the spatio-temporal filtered OBDL fea-
ture. Each red dot represents a video frame. It is clear
that, on average, feature values are higher at fixation points
than at randomly-selected non-fixation points. To validate
this hypothesis, we perform a two-sample t-test [29] us-
ing the control and test sample of each sequence. The null
hypothesis was that the two samples originate in popula-
tions of the same mean. This hypothesis was rejected by
the two-sample t-test, at the 0.1% significance level, for all
sequences. Note that we have used a very strict 0.1% sig-
nificance level, as compared to the more conventional (and
looser) 1% and 5% levels. The p-values obtained for each
video sequence are listed in Table 1, along with the percent-
age of frames where the test sample mean is greater than the
control sample mean. Overall, these results confirm that the
OBDL-derived feature is a strong predictor of fixations.

4. OBDL-MRF saliency estimation model

In this section, we describe a measure of visual saliency
based on a Markov random field (MRF) model of OBDL
feature responses.

4.1. MRF model

While video compression algorithms are very sophis-
ticated estimators of local information content, they only
produce local information estimates, since all the process-
ing is spatially and temporally localized to the MB unit.
On the other hand, saliency has both a local and a global
component. For example, many saliency models imple-
ment inhibition of return mechanisms [26], which suppress
the saliency of image locations in the neighborhood of a
saliency peak. To account for these effects, we rely on a
MRF model [55, 30].

More specifically, the saliency detection problem is for-
mulated as one of inferring the maximum a posteriori
(MAP) solution of a spatio-temporal Markov random field
(ST-MRF) model. This is defined with respect to a binary
classification problem, where salient blocks of 16× 16 pix-
els belong to class 1 and non-salient blocks to class 0. The
goal is to determine the class labels ωt ∈ {0, 1} of the
blocks of frame t, given the labels ω1···t−1 of the previous
frames, and all previously observed compressed informa-
tion o1···t. The optimal label assignment ωt∗ is that which
maximizes the posterior probability p(ωt|ω1···t−1, o1···t).
By application of Bayes rule this can be written as

p(ωt|ω1···t−1, o1···t) ∝
∝ p(ω1···t−1|ωt, o1···t) · p(ωt|o1···t)
∝ p(ω1···t−1|ωt, o1···t) · p(o1···t|ωt) · p(ωt), (3)

where ∝ denotes equality up to a normalization constant.
Using the Hammersley-Clifford theorem [7], the MAP so-
lution is

ωt∗ = argmin
ψ∈Ωt

{
1

Tt
E(ψ;ω1···t−1, o1···t)

+
1

To
E(ψ; o1···t) +

1

Tc
E(ψ)

}
,

(4)

where Ωt is the set of all possible labeling configurations
for frame t, E(·) are energy functions, and Ti a constant.

The energy functions E(ψ;ω1···t−1, o1···t), E(ψ; o1···t),
and E(ψ) measure the degree of temporal consistency of
the saliency labels, the coherence between labels and fea-
ture observations, and the spatial compactness of the label
field, respectively. A more precise definition of these three
components is given in the following sections. Finally, the
minimization problem (4) is solved by the method of iter-
ated conditional modes (ICM) [8].



Table 1. Results of statistical comparison of test and control samples. For each sequence, the p-value of a two-sample t-test and the
percentage (%) of frames where the test sample mean is larger than the control sample mean are shown.
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4.2. Temporal consistency

Given a block at image location n = (x, y) of frame t,
the spatio-temporal neighborhoodNn is defined as the set of
blocks m = (x′, y′, t′) such that |x− x′| ≤ 1, |y − y′| ≤ 1
and t − L < t′ < t for some L. The temporal consistency
of the label field is measured locally, using

E(ψ;ω1···t−1, o1···t) =
∑

n

Et(n), (5)

where Et(n) is a measure of inconsistency within Nn,
which penalizes temporally inconsistent label assignments,
i.e., ωt(x, y) ̸= ωt

′
(x′, y′).

The saliency label ω(m) of block m is assumed to be
Bernoulli distributed with parameter proportional to the
strength of features o(m), i.e. P (ω(m)) = o(m)ω(m)(1 −
o(m))1−ω(m). It follows that the probability b(n,m) that
block m will bind with block n (i.e. have label ψ(n)) is

b(n,m) = o(m)ψ(n)(1− o(m))1−ψ(n). (6)

The consistency measure weights this probability by a simi-
larity function, based on a Gaussian function of the distance
between n and m,

d(n,m) ∝ exp

(
−ds(m, n)

2σ2
s

)
exp

(
−dt(m, n)

2σ2
t

)
, (7)

where ds(., .) and dt(., .) are the Euclidean distances along
the spatial and temporal dimension, respectively, and σ2

s , σ
2
t

two normalization parameters. The expected consistency
between the two locations is then

c(n,m) =
b(n,m)d(n,m)∑

m∈Nn
b(n,m)d(n,m)

. (8)

This determines a prior expectation for the consistency of
the labels, based on the observed features o(m). The en-
ergy function then penalizes inconsistent labelings, propor-
tionally to this prior expectation of consistency

Et(n) =
∑

m∈Nn

c(n,m) (1− ω(m))
ψ(n)

ω(m)1−ψ(n). (9)

Note that Et(n) ranges from 0 to 1, taking the value 0 when
all neighboring blocks m ∈ Nn have the same label as block
n, and the value 1 when neighboring blocks all have label
different than ψ(n).

4.3. Observation coherence

The incoherence between the observation and label fields
at time t is measured with an energy function E(ψ; o1···t).
While this supports the dependence of wt on all prior ob-
servations (o1···t−1), we assume that the current labels are
dependent only on the current observations (ot). Incoher-
ence is then measured by the energy function

E(ψ; o1···t) =
∑

n

(
inf

p
o(p)

)1−ψ(n) (
1− sup

p
o(p)

)ψ(n)

,

(10)
where infimum inf(.) and supremum sup(.) are defined
over p = (x′, y′) such that |x− x′| ≤ 1, |y − y′| ≤ 1.
This is again in [0, 1] and penalizes the labeling of block n
as non-salient, i.e., ψ(n) = 0 when the infimum of feature
value infp o(p) is large, or as salient, i.e., ψ(n) = 1, when
the supremum of feature value supp o(p) is small.

4.4. Compactness

In general, the probability of a block being labeled
salient should increase if many of its neighbors are salient.
The last energy component in (4) encourages this type of
behavior. It is defined as

E(ψ) =
∑

n

Φ(n)1−ψ(n) (1− Φ(n))ψ(n)
, (11)

where Φ(n) is a measure of saliency in the neighborhood of
n. This is defined as

Φ(n) = α
∑

m∈n+

ψ(m) + β
∑

m∈n×

ψ(m), (12)

where n+ and n× are, respectively, the first-order (North,
South, East, and West) and the second-order (North-East,
North-West, South-East, and South-West) neighborhoods of
block n. In our experiments, we set α = 1

6 and β = 1
12 , to

give higher weight to first-order neighbors.

4.5. Optimization

The solution of (4) can be found with many numerical
procedures. Two popular methods are stochastic relaxation
(SR) [17] and ICM [8]. SR has been reported to have some
advantage in accuracy over ICM, but at a higher computa-
tional cost [53]. In this work, we adopt ICM, mainly due



Table 2. Saliency prediction algorithms used in our evaluation. D:
input data (cmp: compressed; pxl: pixel); I: Implementation (M:
Matlab; P: Matlab p-code; C: C/C++; E: Executable).

# Algorithm First Author Year D I
1 PMES Ma [33] 2001 cmp M
2 MAM Ma [34] 2002 cmp M
3 PIM-ZEN Agarwal [2] 2003 cmp M
4 PIM-MCS Sinha [48] 2004 cmp M
5 MCSDM Liu [32] 2009 cmp M
6 MSM-SM Muthuswamy [40] 2013 cmp M
7 PNSP-CS Fang [14] 2014 cmp M
8 MaxNorm Itti [26]† 1998 pxl C
9 Fancy1 Itti [24]† 2004 pxl C
10 SURP Itti [25]† 2006 pxl C
11 GBVS‡ Harel [19] 2007 pxl M
12 STSD Seo [47] 2009 pxl M
13 SORM Kim [27] 2011 pxl E
14 AWS Diaz [16] 2012 pxl P

†ilab.usc.edu/toolkit
‡DIOFM channels (DKL-color, Intensity, Orientation, Flicker, and Motion)

to its simplicity. The label of each block is initialized ac-
cording to the corresponding feature value, o(n), i.e. the
block is labeled salient if o(n) > 0.5 and non-salient oth-
erwise. Each block is then relabeled with the label (0 or 1)
that produces the largest reduction in the energy function.
This relabeling is iterated until no energy reduction is pos-
sible. We limit the iterations to eight in our experiment. It is
worth mentioning that ICM is prone to local minimum and
the results are dependent on the initial labeling.

4.6. Final saliency map

The procedure above produces the most probable, a pos-
teriori, map of salient block labels. To emphasize the lo-
cations with higher probability of attracting attention, the
OBDL of a block declared salient (non-salient) by the MRF
is increased (decreased) according to the OBDLs in its
neighborhood. The process is formulated as

S(n) =

{
infq {o(q)d(q, n)} ψ(n) = 1

1− infq {(1− o(q)) d(q, n)} ψ(n) = 0
(13)

where q = (x′, y′, t′) is defined as the set of blocks such
that |x− x′| ≤ 1, |y − y′| ≤ 1 and t − L < t′ ≤ t, and
d(q, n) as in (7). In this way, a block n labeled as salient by
the MRF inference is assigned a saliency equal to the largest
feature value within its neighborhood, weighted by its dis-
tance from n. On the other hand, for a block n declared
as non-salient, this operation is applied to the complement
of the saliency values within Nn. The complement of this
value is then assigned as the saliency value of n.

5. Experimental Results
In this section, we report on various experiments

designed to evaluate the performance of the OBDL-
MRF. The MATLAB code and data used in this

Table 3. Average processing time (ms) per frame.
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study is available at www.sfu.ca/∼ibajic/software.html and
www.svcl.ucsd.edu/publications.

5.1. Experimental setup

The proposed algorithm was compared with a number of
state-of-the-art algorithms for saliency estimation in video,
which are listed in Table 2. Among these, only AWS [16] is
a purely spatial model. AWS is frequently cited as an accu-
rate predictor of eye fixations in still images and videos. For
each algorithm, the table indicates whether its features are
computed from raw pixel values (pxl) or compressed video
data (cmp), as well as some implementation details.

Evaluation was carried out on the DIEM [38] and
SFU [18] datasets. On DIEM, 20 sequences, similar to
those used by [10], were chosen. To match the length of the
SFU sequences, only the first 300 frames of the DIEM se-
quences were used in the experiments. Since DIEM videos
have various resolutions, they were first resized to 288 pix-
els in height, while preserving the original aspect ratio. This
resulted in five resolutions: 352×288, 384×288, 512×288,
640 × 288 and 672 × 288. All sequences were encoded in
the H.254/AVC format with FFMPEG (www.ffmpeg.org)
using QP ∈ {3, 6, ..., 51} in the baseline profile, with de-
fault Group-of-Pictures (GOP) structure.

Two popular metrics were used to evaluate the accu-
racy of the eye fixation predictions of the various al-
gorithms: area under the receiver operating characteris-
tic Curve (AUC) [52] and normalized scanpath saliency
(NSS) [44]. Both were corrected for center bias and bor-
der effects (what is usually referred to as “shuffled”) as sug-
gested by [43, 54], i.e. by sampling control points more
often from the middle of the frame than from its boundaries.

5.2. MRF configurations

We started with a number of experiments that tested the
role of the different components of the saliency detector in
its performance. The first set of experiments tested the im-
pact of the MRF inference in the saliency judgments. We
compared the performance of the saliency measure of (13)
for various MRF settings. These included 1) no MRF, where
saliency was measured by the OBDL feature responses
o(m), including raw OBDL, spatial-filtered OBDL (OBDL-
S) and spatio-temporal filtered OBDL (OBDL-T) and 2)
MRFs that implemented only subsets of the energy function
of (4), indicated by T, O and C for temporal consistency, ob-
servation coherence and compactness, respectively. For ex-
ample, OBDL-MRF-TC means that the MRF model imple-
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Figure 2. Accuracy of various MRF settings. Each 2D color map
shows the average AUC score of each setting on each sequence.
Topbar: Average AUC score for each sequence, across all settings.
Sidebar: Average AUC scores each setting across all sequences.
Error bars represent standard error of the mean, σ/

√
n, where σ is

the sample standard deviation of n samples. Sequences from the
SFU dataset are indicated with capital first letter.

mented only temporal consistency and compactness. This
was implemented by setting subsets of the temperature val-
ues to infinity. In our example, To = ∞. The temperature
constants were otherwise set to 1. The temporal support pa-
rameter L of Section 4.2 was set to 500ms. Fig. 2 shows
the average AUC score of the various MRF settings, across
test sequences. The average AUC performance across se-
quences/settings is shown in the sidebar/topbar. Note that
the simple temporally filtered OBDL (OBDL-T) achieves
good performance. The global fusion of saliency informa-
tion, by the MRF provides some additional gains. In gen-
eral, the addition of more components to the energy func-
tion results in improved predictions, with best results pro-
duced by the full-blown OBDL-MRF.

5.3. Comparison to the stateoftheart

A set of experiments was performed to compare the
OBDL-MRF to state-of-the-art saliency algorithms. These
experiments used quantization parameter QP = 30, i.e. rea-
sonably good video quality - average peak signal-to-noise
(PSNR) across encoded sequences of 35.8 dB.

We start by comparing the processing times of the vari-
ous saliency measures in Table 3. All times report to im-
plementation on an Intel (R) Core (TM) i7 CPU at 3.40
GHz and 16 GB RAM running 64-bit Windows 8.1. As
expected, compressed-domain measures tend to require far
less processing time than their pixel-domain counterparts.
The proposed OBDL-MRF, implemented in MATLAB, re-
quired an average of 39 ms per video frame. While this is
slower than some of the compressed-domain algorithms, it
enables the computation of saliency at close to 30 fps. This
is enough for most applications of computer vision.

Fig. 3 shows the average AUC (top figure) and NSS
scores (bottom figure) of various algorithms, across test se-
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Figure 3. Accuracy of various saliency algorithms over the two
datasets according to (top) AUC and (bottom) NSS scores.

quences. On average, pixel-based methods perform better
than those based on compressed video. This trend is how-
ever disrupted by the OBDL-MRF, which achieves the best
performance. Figure 5 illustrates the differences between
the saliency predictions of various algorithms.

The performances of the different saliency measures
were also evaluated with a multiple comparison test [21].
This involves computing, for each sequence and measure,
both the average score (across all frames) of the saliency
measure and the 95% confidence interval for the average
score. A set of top performers is then selected for the se-
quence. This includes the measure of highest average score
and all other measures whose 95% confidence interval over-
laps with that of the highest-scoring measure. The number
of appearances of the different saliency measures among the
top performer class is shown in Fig. 4(a). Again, pixel-
based methods tend to do better than compressed-based
methods and all methods underperform the OBDL-MRF.

5.4. Sensitivity to the amount of compression

Since a compressed video representation always involves
some amount of information loss, it is important to deter-
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Figure 4. a) Number of appearances among top performers, under AUC and NSS. b) Impact of average PSNR on saliency predictions.
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Figure 5. Saliency maps obtained by various algorithms on a video frame.

mine the sensitivity of the saliency measure to the amount
of this loss. This question is particularly pertinent for the
OBDL, since the predictive power of bit counting could
change dramatically across compression regimes. Obvi-
ously, in the limit of “zero-bit encoding,” the proposed
OBDL-MRF will not be a very good saliency predictor. To
study this question, we repeated the experiments above for
different amounts of compression loss, by varying the QP
parameter. The quality of the encoded video, measured in
terms of PSNR, drops as the QP increases. Fig. 4(b) shows
how the average AUC and NSS scores change as a func-
tion of the average PSNR (across sequences), by choosing
QP ∈ {3, 6, ..., 51}. Interestingly, some of the methods that
exhibit largest sensitivity to compression artifacts (such as
AWS or GBVS) are not compressed-domain approaches.

Somewhat surprisingly, saliency predictions degrade for
both very low and high quality video. For most methods,
it appears that an intermediate PSNR leads to the best per-
formance. This could be because, at intermediate PSNRs,
compression algorithms act as mild low-pass filtering op-
erators, eliminating some of the video sequence noise. It
appears that many of the algorithms are sensitive to such
noise. With respect to the OBDL-MRF, the accuracy of
saliency predictions degrades substantially at the extremes
of the compression range. While at low rates there are too
few bits to enable a precise measurement of saliency, at high
rates there are too many bits available, and all image regions
become salient. In any case, the OBDL-MRF achieves the
top scores for the overwhelming majority of the compres-

sion range. It is also encouraging that saliency estimation is
most accurate in the middle of this range, since this is the
preferred operating point for most vision applications.

6. Conclusion

We proposed a model of visual saliency based on the
compressibility principle. While, at a high level, this is sim-
ilar to well-known saliency models, such as those based on
self-information and surprise, it has the distinct advantage
of being readily available at the output of any video encoder,
which already exists in most modern cameras. Furthermore,
the compressibility measure now proposed naturally takes
into account the trade-off between spatial and temporal in-
formation, because the video encoder already performs rate-
distortion optimization to produce the best predictions for
different video regions. In this sense, the proposed solu-
tion is a much more sophisticated measure of compressibil-
ity than previous measures, based on reconstruction error
or cruder measurements of self information. The resulting
saliency measure was shown highly accurate for the pre-
diction of eye fixations, achieving state of the art results
on standard benchmarks. This is complemented by very
low complexity, which makes it appropriate for in-camera
saliency estimation.
Acknowledgments: This work was supported in
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