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I. Introduction

• Motivations:
– The state-of-the-art neural networks have high computational complexity

(billions of FLOPs) and large model size (hundreds of MB).

– Binary neural network (BNN) theoretically enables 64× model size reduction
and 64× computational speeds-up.

– BNN has significant accuracy drop from the full-precision neural network.

• Contributions:
– An half-wave Gaussian quantization (HWGQ) is proposed as forward ap-

proximation of the effective non-linear ReLU function.

– HWGQ has efficient implementation, by exploiting the statistics of of net-
work activations and batch normalization.

– To overcome the problem of gradient mismatch, due to the use of different
forward and backward functions, several effective piece-wise backward ap-
proximators are investigated and they successfully suppress the mismatch.

– HWGQ-Net achieves much closer performance to full precision networks,
such as AlexNet, ResNet, GoogLeNet and VGG-Net, than previously avail-
able low-precision networks, with 1-bit binary weights and 2-bit quantized
activations.

II. Binary Neural Network

• Goals
– unit dot-product

z = g(wT
x)

– large memory footprint required to store weights w.

– high computational complexity required to compute large numbers of full-
precision dot-products w

T
x.

• Weight Binarization
– multiplication-free convolution

I ∗ W ≈ α(I ⊕ B)

where B
∗ = sign(W) and α∗ = 1

cwh
‖W‖1

– tremendous reduction in the memory footprint of the model, but the problem
of computational complexity is not fully solved, since I is still with full-
precision.

• Binary Activation Quantization
– substantial complexity reductions can be obtained by the binarization of I,

by implementing the dot products with logical and bit-counting operations.

– it is a much harder problem than weight binarization, and the main reason
responsible for accuracy drop of binary neural network.

– sign function is non-differentiable, and hard-tanh function is used as back-
ward approximation such that the gradients can be back-propagated.

– it is upper-bounded by hard-tanh function, which is close to abandoned in
the deep learning community.
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III. HWGQ Network

• Half-wave Gaussian Quantization

– low-precision version of the effective ReLU, and upper-bounded by it.
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q1
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HWGQ
Quantization

• Efficient Quantization Optimization
– the optimal quantizer depends on the data distribution

Q
∗

(x) = argmin
Q

∫
p(x)(Q(x)− x)

2
dx

– dot-product distributions are approximately Gaussians.

◦ quantization optimization is an iterative algorithm.

◦ the optimal quantizer varies across units, layers and back-propagation
iterations.

– Batch Normalization

◦ all Gaussians have zero mean and unit variance.

◦ the optimal quantization parameters are universal.

◦ apply the quantization algorithm only once, and use the optimal
quantizer parameters to parametrize a single HWGQ for all layers.
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• Gradient Mismatch

– gradient mismatch between forward
HWGQ and backward ReLU func-
tions, unbounded on the tail.

– it drives the learning unstable, espe-
cially for deeper networks.
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– alternative backward approximations are investigated

◦ successfully suppress gradient mismatch on the tail.
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• Extension to other Bit-width
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IV. Experimental Results

• Low-precision Activation Quantization Comparison

– sign(x) is not a good choice for
forward quantization function, but
HWGQ has a higher upper bound.

– the much lower training error of
HWGQ suggests that it enables a
much better approximation of the full
precision activations than sign(x).

– the gradient mismatch makes the op-
timization somewhat instable.
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• Backward Approximations Comparison
– vanilla ReLU creates instable optimization for all networks, more serious for

deeper networks.

– both of the clipped and log-tailed ReLU enable more stable learning, and
in general the clipped ReLU is slightly better than the log-tailed ReLU.
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• Comparison with the state-of-the-art
– closer performance to the full-precision counterparts than the state-of-the-

art low-precision networks.

– enables theoretically 64× model size reduction and 32× speeds-up.
reported.

Model
AlexNet ResNet-18

XNOR DOREFA HWGQ XNOR HWGQ

Top-1 44.2 47.7 52.7 51.2 59.6

Top-5 69.2 - 76.3 73.2 82.2

Top-1 gap -12.4 -8.2 -5.8 -18.1 -7.7

• Good generalization on various popular networks
– good performance regardless of model size, depth, complexity, etc.

– no hyper-parameter needs to be tuned.Table 5. The results of various popular networks.
Model Reference Full HWGQ

AlexNet
Top-1 57.1 58.5 52.7

Top-5 80.2 81.5 76.3

ResNet-18
Top-1 69.6 67.3 59.6

Top-5 89.2 87.9 82.2

ResNet-34
Top-1 73.3 69.4 64.3

Top-5 91.3 89.1 85.7

ResNet-50
Top-1 76.0 71.5 64.6

Top-5 93.0 90.5 85.9

VGG-Variant
Top-1 - 69.8 64.1

Top-5 - 89.3 85.6

GoogLeNet
Top-1 68.7 71.4 63.0

Top-5 88.9 90.5 84.9

• Reproducible research
– https://github.com/zhaoweicai/hwgq


