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1V. EXPERIMENTAL RESULTS

e Low-precision Activation Quantization Comparison

I. INTRODUCTION

e Motivations:

— The state-of-the-art neural networks have high computational complexity — low-precision version of the effective ReLU, and upper-bounded by it.
(billions of FLOPs) and large model size (hundreds of MB). A A

— Binary neural network (BNN) theoretically enables 64 X model size reduction HWGQ has a higher upper bound.
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— BNN has significant accuracy drop from the full-precision neural network. > ) >

tl HWGQ suggests that it enables a
much better approximation of the full
precision activations than sign(x).
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— sign(x) is not a good choice for
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e Contributions:

— An half-wave Gaussian quantization (HWGQ)) is proposed as forward ap-
proximation of the eflective non-linear ReLLU function.
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— the gradient mismatch makes the op-
timization somewhat instable.
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e Efficient Quantization Optimization
— the optimal quantizer depends on the data distribution

— HWGQ has efficient implementation, by exploiting the statistics of of net-
work activations and batch normalization.

e Backward Approximations Comparison

— vanilla ReLLU creates instable optimization for all networks, more serious for
deeper networks.

— To overcome the problem of gradient mismatch, due to the use of different . . 5
forward and backward functions, several effective piece-wise backward ap- Q (z) = arg mén p(x)(Q(x) — x) " dx

proximators are investigated and they successtully suppress the mismatch.

— dot-product distributions are approximately Gaussians. — both of the clipped and log-tailed ReLU enable more stable learning, and

in general the clipped ReLLU is slightly better than the log-tailed ReLU.

— HWGQ-Net achieves much closer performance to full precision networks,
such as AlexNet, ResNet, GoogleNet and VGG-Net, than previously avail-
able low-precision networks, with 1-bit binary weights and 2-bit quantized
activations.

o quantization optimization is an iterative algorithm.

o the optimal quantizer varies across units, layers and back-propagation
iterations. \
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— Batch Normalization
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o all Gaussians have zero mean and unit variance.
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I1I. BINARY NEURAL NETWORK
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o the optimal quantization parameters are universal.
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e Goals o apply the quantization algorithm only once, and use the optimal ol ' .l - | fw ity |
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— large memory footprint required to store weights w. . .
e Comparison with the state-of-the-art

— closer performance to the full-precision counterparts than the state-of-the-
art low-precision networks.

— high computational complexity required to compute large numbers of full-
precision dot-products w? x.

e Weight Binarization

— multiplication-free convolution
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— enables theoretically 64 x model size reduction and 32X speeds-up.
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( ) e Gradient Mismatch Top-1 447 477 527 512 | 596
where B™ = sign(W) and o™ = c;}h W || 1 — gradient mismatch between forward Top-5 69.2 ) 76.3 73.2 82.2
: : : Top-1 gap -12.4 -8.2 -5.8 -18.1 -7.1
— tremendous reduction in the memory footprint of the model, but the problem HWGQ and backward ReLU tunc-

of computational complexity is not fully solved, since I is still with full- tions, unbounded on the tail.

precision.

e Good generalization on various popular networks
— good performance regardless of model size, depth, complexity, etc.

— 1t drives the learning unstable, espe-

: : : L. cially for deeper networks.
e Binary Activation Quantization Y P

. . . . . — no hyper-parameter needs to be tuned.
— substantial complexity reductions can be obtained by the binarization of I, yper=p

— alternative backward approximations are investigated

by implementing the dot products with logical and bit-counting operations. o successfully suppress gradient mismatch on the tail. Model Reterence | Full | HWGQ
— it is a much harder problem than weight binarization, and the main reason A A AlexNet Top-1 57.1 58.5 52.7
responsible for accuracy drop of binary neural network. Clipped ReLU ~ q2 F----- , Loé'tfged 2f-----3 , Top-> 00.2 81.5 /6.3
— stgn function is non-differentiable, and hard-tanh function is used as back- / i ResNet-18 %O?_é ggg g;g ggg
ward approximation such that the gradients can be back-propagated. : q : > ngi_l 73°3 69.4 64.3
— it is upper-bounded by hard-tanh function, which is close to abandoned in * * ResNet-34 Top-5 91:3 89:1 85:7
the deep learning community. Top-1 76.0 71.5 64.6
A A ResNet-50 | 1op-5 930 | 905 | 859
Fosr_ward EaC(lfvTvarCIll . . . VGG-Variant Top-1 - 69.8 64.1
ign 1 ard Tan e [ixtension to other Bit-width | Top-s - 89.3 | 85.6
A A Top-1 68.7 71.4 63.0
> > GoogleNet | 105 889 | 90.5 | 849
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— https://github.com/zhaoweicai/hwgq




