
Deep Scene Image Classification with the MFAFVNet

Yunsheng Li Mandar Dixit Nuno Vasconcelos
University of California, San Diego

La Jolla, CA 92093
yul554@ucsd.edu mdixit@ucsd.edu nvasconcelos@ucsd.edu

Abstract

The problem of transferring a deep convolutional net-

work trained for object recognition to the task of scene im-

age classification is considered. An embedded implemen-

tation of the recently proposed mixture of factor analyzers

Fisher vector (MFA-FV) is proposed. This enables the de-

sign of a network architecture, the MFAFVNet, that can be

trained in an end to end manner. The new architecture in-

volves the design of a MFA-FV layer that implements a sta-

tistically correct version of the MFA-FV, through a combi-

nation of network computations and regularization. When

compared to previous neural implementations of Fisher vec-

tors, the MFAFVNet relies on a more powerful statistical

model and a more accurate implementation. When com-

pared to previous non-embedded models, the MFAFVNet

relies on a state of the art model, which is now embedded

into a CNN. This enables end to end training. Experiments

show that the MFAFVNet has state of the art performance

on scene classification.

1. Introduction

Scene image classification is an important problems for
applications of computer vision such as robotics, image
search, geo-localization, etc. It is also a challenging prob-
lem, e.g. object recognition methods do not necessarily
work for scenes. This is because scenes include both a
holistic component, the gist of the scene, and an object-
based component. Furthermore, the object vocabulary is
usually open-ended and it does not suffice to recognize ob-
jects, as most scenes are collections of objects in charac-
teristic spatial layouts. There is also a need to model rela-
tionships between objects. Historically, this motivated dif-
ferent approaches to scene classification, including holistic
gist descriptors [20] and descriptors based on local features.

Localized approaches included descriptors of contex-
tual relationships between objects [14] or semantics prop-
erties such as the objects in the scene [15] or scene at-
tributes [25]. Many of these approaches were based on the

bag-of-features (BoF) representation, using local features
such as SIFT or HOG [19, 3], combined through a pool-
ing operator. Pooling has a critical role in scene classifi-
cation, for two reasons. First, there is a need to integrate
object information across the scene. Second, this integra-
tion must be invariant to the locations of individual objects,
which can change drastically within the same scene class.
Eventually, sophisticated pooling strategie, such as the vec-
tor of locally aggregated descriptors (VLAD) [12] or the
Fisher vector (FV) [23] emerged as the dominant pooling
mechanisms for scene classification.

In recent years, CNNs have become the feature extrac-
tors of choice for scene classification. In fact, the imple-
mentation of a holistic scene classifier with a CNN is al-
most trivial. It suffices to train the CNN on whole scene
images. The main challenges are the assembly of a large
dataset of such images and the standard difficulties of train-
ing a deep network. These problems have been addressed
in [29], through the assembly of the Places dataset and its
use to train a deep scene classifier. The use of deep object-

based representations for scene classification has, however,
proven more challenging. This is, in great part, because
object-based scene classification is a difficult transfer learn-
ing problem. While the ease with which CNNs can be trans-
ferred across datasets, by simple finetuning, is one of their
greatest assets for vision, this procedure has its limitations.
The transfer from a localized representation (needed to rec-
ognize objects) to a holistic task (classification of whole
scenes) cannot, in general, be solved by simple finetuning.

The previous success of pooling on this type of trans-
fer created a resurgence of interest in the topic within the
deep learning realm. Several authors proposed Fisher vec-
tors or similar pooling mechanisms for features extracted by
object recognition CNNs. Early methods adopted a BoF-
like approach, based on the extraction of features from in-
termediate CNN layers, which were then fed to dictionary
learning methods such as clustering [11] or sparse cod-
ing [17] and finally used to implement descriptors such as
the VLAD [11] or Fisher vector [17]. Later, [5] proposed
the semantic Fisher Vector, which extracts features from the

5746

softmax layer at the top of the CNN, converting features
from probability space to the natural parameter space.

All these methods suffer from two drawbacks. First, the
Fisher vector structure is not easy to integrate in a CNN.
This is because the Fisher vector is defined with respect
to the probability distribution of the CNN features, usually
estimated with a mixture learned by maximum likelihood.
The Fisher vector is then a complex expression of the mix-
ture parameters, which changes when these change. In re-
sult, the Fisher vector cannot be learned by simply back-
propagating the output of the scene classifier. All methods
above avoid this difficulty by using the CNN to extract fea-
tures and learning the Fisher vector indepeddently. This,
however, prevents end to end training and, consequently,
the finetuning of the object network to the scene classifica-
tion task. In result, the transfer between the two tasks relies
solely on the Fisher vector, which is sub-optimal.

The second problem is that the Fisher vector is usually
learned with respect to a Gaussian mixture model (GMM).
Since CNN features are high dimensional, it is impractical
to rely on Gaussians of full covariance. Instead, the mix-
ture components are chosen to have diagonal covariance.
This creates problems when the feature manifold is non-
linear. In this case, a large number of diagonal GMM com-
ponents are required and the Fisher vector is very high di-
mensional. This is indeed the norm for computer vision ap-
plications, where Fisher vectors usually have several thou-
sand dimensions. While the CNN is trained to produce lin-
early separable responses to the different classes, there is
no guarantee CNN feature distributions are prone to mod-
eling with the diagonal GMM. On the contrary, given the
highly non-linear feature transformation implemented by a
deep CNN, this is unlikely. Hence, a Fisher vector based
on the diagonal-GMM is likely to be very high dimensional
and potentially sub-optimal for scene classification.

Recently, some works have attempted to solve these
problems. One possibility is to bypass the Fisher vector
altogether. For example, [7] proposed a compact bilinear
pooling (CBP) mechanism that enables end-to-end training
by simple backpropagation. While this was shown applica-
ble to scene classification, the performance of CBP is infe-
rior to those of previous approaches, such as the semantic
Fisher vector of [5] or the sparse coding methods of [18], for
equivalent object CNNs. Another possibility is to embed the
Fisher vector in the CNN architecture, by deriving a neural
network implementation of its equations. [1] proposed the
NetVLAD, an embedded implementation of the VLAD de-
scriptor, and [26] proposed the Deep FisherNet, an embed-
ded implementation of the GMM Fisher vector. However,
to avoid the difficulties of the complete Fisher vector, these
methods make approximations, such as disregarding covari-
ance structure (VLAD) or using crude approximations of
posterior mixture probabilities (Deep FisherNet). These ap-

proximations can be quite sub-optimal.

An alternative strategy, proposed by [6], is to use a better
model of CNN feature statistics than the diagonal GMM.
Instead, this work proposed a Fisher vector based on the
mixture of factor analyzers (MFA). This has the advantage
of accounting for the covariance information of each mix-
ture component, which is modeled through factor analysis.
Under the MFA model, good results can be achieved with
mixtures of few components and Fisher vectors of reduced
dimension. However, while the MFA-Fisher vector (MFA-
FV) currently holds state of art results for scene classifica-
tion, it is not an integrated model, i.e. it is learned inde-
pendently of the network. This raises all the reservations
discussed above.

In this work, we derive an embedded implementation
of the MFA-FV, and use it to design a network architec-
ture, the MFAFVNet, which can be trained in an end to
end manner. This involves the derivation of a MFA-FV
layer that implements a statistically correct version of the
MFA-FV, through a combination of network computations
and regularization. The computations replicate those of the
MFA-FV, regularization guarantees that all parameters have
a statistically valid interpretation. When compared to pre-
vious embedded implementations, the MFAFVNet relies
on a more powerful statistical model, which accounts for
covariance information, and a more accurate implementa-
tion. This results in significant performance gains for scene
classification. When compared to previous non-embedded
models, the MFAFVNet relies on a state of the art model,
which is embedded. This enables end to end training and
better scene classification performance. Extensive experi-
ments on the MIT Indoor and SUN datasets show that the
MFAFVNet achieves state of the art performance for scene
classification.

2. The MFA Fisher Vector

In this section, we review the main ideas behind the
MFA-FV.

2.1. Mixture of Factor Analyzers

The factor analysis (FA) model is a probabilistic exten-
sion of principal component analysis (PCA) [23]. Given a
vector x ∈ RD of D observations, it explains its covariance
structure by assuming that the variability of the observations
can be explained by a small number d < D of hidden or la-
tent factors, usually represented as a factor vector z ∈ Rd.
Observations x are assumed to be sampled according to the
model

x− µ = Λz + ε, (1)

where µ is the mean value of x, Λ ∈ RD×d is a fac-

tor loading matrix, and ε is a noise term. Factors z and
noise ε are independent of each other and Gaussian, and the

5747

Ȧ

Ȧଵ

Ȧଶ
Ȧଷ

Ȧସ

Ȧସ

Ȧହ

Figure 1. Probability distributions defined on linear susbpaces (left) or
non-linear manfolds (right) can require many mixture components to ap-
proximate, when covariances are diagonal (shown in red). However, they
can frequently be approximated by a few MFA components (in green).

noise variables are assumed uncorrelated, i.e. distributed
as N (ε; 0, I). The factors can be dependent, i.e. they are
distributed as N (z; 0,ψ), but the matrix ψ is sometimes as-
sumed diagonal. It follows from the linearity of (1) that x is
Gaussian with covariance

Σ = cov(x− µ) = cov(Λz + ε) = ΛΛT + ψ. (2)

Hence, the factor loading matrix Λ has a role similar to the
principal component matrix of PCA.

The mixture of factor analyzers (MFA) is a mixture
model whose components follow the factor analysis model.
A MFA of C components is defined by the distributions

p(c) = πc (3)

p(z|c) = N (z; 0, I) (4)

p(x|z, c) = N (x;Λcz + µc,Ψc) (5)

where p(c) is the probability of component c and this com-
ponent is a FA of mean µc, factor loading matrix Λc and
noise covariance Ψc.

The MFA can be learned with a EM algorithm, which is
discussed in [8]. This iterates between an expectation step
that computes expected values for the hidden class c and
factors z variables, and a maximization step that updates
these model parameters so as to maximize the likelihoods
of a set of observations {xi}Ni=1.

2.2. Fisher vectors

Given a dataset D = {xi} and a probability model
p(x; θ) the score G(θ) = ∂

∂θ log p(D; θ) measures the sen-
sitivity of the likelihood p(D; θ) to parameter θ. The nor-
malization of this gradient vector by the square root of the

Fisher information matrix I(θ) = −
∑

i
∂2

∂θ2 log p(xi; θ),

i.e. the vector I−1/2G(θ) is usually denoted as the Fisher

vector [23]. However, because the Fisher information can
be difficult to compute, it is frequently ignored and the

Fisher vector reduces to the score G(θ). As is common in
computer vision, we adopt this practice in this work.

The Fisher vector is commonly used with the standard
Gaussian mixture model, defined by

p(c) = πc (6)

p(x|c) = N (x;µc,Σc). (7)

However, because vision data tends to be high-dimensional,
it is usually difficult to use full covariance Gaussians in
this model, and the covariances Σc are assumed as diago-
nal. This removes a lot of the expressiveness of the mix-
ture model. In general, many components are needed to
achieve a good approximation of the distribution p(x). As
illustrated in Figure 1, this is particularly true when the
data lives on correlated low-dimensional subspaces or non-
linear manifolds that can be approximated by a set of low-
dimensional subspaces. The MFA is a substantially better
model for this type of data since, in this case, only a few
mixture components and a small number d of hidden factors
are required to estimate the covariance structure of (2). This
is illustrated in Figure 1 as well. This observation, moti-
vated the introduction of the MFA-Fisher vector (MFA-FV)
in [6], which was shown to have the form

Gµc
(I) =

∑

i

p(c|xi; θ)ψ
−1(I − ΛcΓc)(xi − µc)(8)

GΛc
(I) =

∑

i

p(c|xi; θ)ψ
−1(ΛcΓc − I)

[(xi − µc)(xi − µc)
TΓT

c − Λc] (9)

Γc = ΛT
c S

−1
c . (10)

This work has also shown that the MFA-FV is a substan-
tially better representation than the classical FV when the
observations x are feature vectors produced by a deep con-
volutional neural network (CNN). As far as we know, this
is the state of the art representation for scene classification.
However, [6] did not integrate the MFA-FV in the network
computation. This prevents end-to-end training and the tun-
ing of the network to the scene classification task. Since end
to end training is an important reason for the recent success
of the deep CNN architecture, it appears natural to pursue
this integration.

3. Network implementation of the MFA-FV

In this section, we derive a neural network implementa-
tion of the MFA-FV.

3.1. The MFA-FV layer

To derive a version of (8)-(10) implementable as a neural
network, we start by defining

∆ic = xi − µc (11)

Sc = ΛcΛ
T
c + ψc. (12)

5748

ݔ +

െࢉࣆ

ȟ
ࢉࡼ

ܲȟ ܲȟ ܲȟ ்

+

െࢉࢹ

ࢉࢫ
ܲȟ ܲȟ ்Ȧ

െȟ் ܲȟ +

ࢉࣄܗܔ

െȟ் ܲȟ+ ��� ߢ

െȟ் ܲȟ+ ��� ߢ

x

dot
product

outer
product

softmax

pooling

Figure 2. The MFA-FV layer. The expressions in red are the parameters of the c
th MFA component. The remaining expressions show what is computed

at each stage of the network.

Combining this with (10),

ψ−1
c (I − ΛcΓc) = (Sc − ΛcΛ

T
c)

−1(I − ΛcΛ
T
c S

−1
c)

= S−1
c (I − ΛcΛ

T
c S

−1
c)−1(I − ΛcΛ

T
c S

−1
c)

= S−1
c ,

and it follows that (8)-(9) can be written as

Gµc
(I) =

∑

i

p(c|xi; θ)S
−1
c ∆ic (13)

GΛc
(I) = −

∑

i

p(c|xi; θ)S
−1
c [∆ic∆

T
icS

−1
c Λc − Λc]

= −
∑

i

p(c|xi; θ)S
−1
c ∆ic[S

−1
c ∆ic]

TΛc

+
∑

i

p(c|xi; θ)S
−1
c Λc (14)

Furthermore, since (2) implies that the cth mixture com-
ponent p(x|c) is distributed as N (x, µc, Sc), it follows that

p(c|xi; θ) =
πcN (xi;µc, Sc)

∑

k πkN (xi;µk, Sk)
(15)

=

πc

|Sc|
1

2

exp{− 1

2
∆T

icS
−1
c ∆ic}

∑

k
πk

|Sk|
1

2

exp{− 1

2
∆T

icS
−1

k ∆ic}

Denoting

Pc = S−1
c , (16)

Ωc = S−1
c Λc, (17)

κc =
πc

|Sc|
1

2

, (18)

finally leads to

Gµc
(I) =

∑

i

p(c|xi; θ)Pc∆ic (19)

GΛc
(I) = −

∑

i

p(c|xi; θ){Pc∆ic(Pc∆ic)
TΛc − Ωc}

(20)

p(c|xi; θ) =
κc exp{−

1

2
∆T

icPc∆ic}
∑

k κk exp{−
1

2
∆T

ikPk∆ik}
(21)

An implementation of (20) as a neural network layer is
shown in Figure 2. The bottom branch computes the pos-
terior probability of (21). The top branch computes the re-
mainder of the argument of the summation in (20). The
computations of (19) are similar. The bottom branch is
identical, and the top branch omits the operations beyond
Pc∆ic. However, preliminary experiments showed no gains
for the addition of this component. Hence, we use only the
second order information, i.e. (20). Note that the operations
inside circle are applied entry-wise, the boxes implement
matrix multiplications implementable with standard layers
of weights, the outer product layer is similar to that of [16],
and the dot-product layer can be implemented with an ele-
mentwise multiplication and a sum.

3.2. Relation to other Fisher vectors

The MFA-FV is related to various previous representa-
tions of the same type. For example, if Λc is the identity
matrix and Sc a diagonal matrix of elements σ2

ck, then (19)
reduces to

Gµck
(I) =

∑

i

p(c|xik; θ)
(xik − µck)

σ2
ck

(22)

and (20) to

Gσck
(I) =

∑

i

p(c|xi; θ)
1

σ2
ck

{

(xik − µck)2

σ2
ck

− 1

}

, (23)

which are similar to the Fisher Score of the standard Gaus-
sian mixture model [23, 21]. Further omitting the second
other information leads to

Gµck
(I) =

∑

i

p(c|xi; θ)(xik − µck) (24)

5749

Standard CNN

!" +$$⋮

Class scores
& '

Class 1
Class 2

Class *

Class +

⋮

⋮
⋮

p '

PCA Layer

MFA-FV Layer

⋮ ⋮

L2 Norm

Power
Norm

ROI Pooling Layer

Figure 3. Architecture of MFAFVNet.

and replacing the posterior probabilities p(c|xi; θ) by binary
variables aic such that aic = 1 if µc is the closest mean to
xi and aic = 0 reduces to the VLAD

Vck =
∑

i

aic(xik − µck). (25)

Note that the variables aic can be obtained by replacing the
softmax by a max in Figure 2.

3.3. The MFAFVnet

The overall architecture of the MFAFVNet is shown in
Figure 3. A model pretrained on ImageNet is first used to
extract a vector p(x) of image features. Our implementation
uses either Alexnet or VGG, both of which include a se-
quence of several convolutional layers and three fully con-
nected layers. As is common for scene classification, this
network is applied to image patches [23], producing multi-
ple feature maps per image to classify. When these patches
are of a single scale, the model is converted to a fully convo-
lutional network. When patches of multiple scales are used,
the final pooling layer is replaced with a region-of-interest
(ROI) pooling layer, which accepts feature maps of multiple
sizes and produces a fixed size output to the fully connected
layers. This is similar to the standard practice in the ob-
ject detection literature [10, 9]. As is usual in the Fisher
vector literature [23] the feature vector p(x) is subject to
dimensionality reduction. This is implemented by a fully
connected layer of appropriate dimensions and creates the
input to the MFA-FV layer. This is implemented as shown
in Figure 2. Note that the MFA-FV layer pools multiple lo-
cal features, corresponding to objects of different sizes and
in different locations of the input image. It produces a sin-
gle feature vector that represents the whole input image. As
is standard in the Fisher vector literature [21], two normal-
ization layers (power normalization and L2 normalization)
are finally included in the network before the final linear
classifier.

3.4. Loss Function

The parameters µc, Pc,Λc,Ωc, and log kc of the network
of Figure 2 have an interpretation as statistical quantities,
which follows from the derivation of Section 3.1. To main-
tain this interpretation, they have to satisfy certain relation-
ships, namely (12), (16), (17), and (18). Some of these re-
lationships do not necessarily need to be enforced. For ex-
ample, since (18) is the only to involve πc, there is a one
to one relationship between the values of log κc and πc, in-
dependently of the value of |Sc|1/2. Hence, it is equivalent
to learn πc under the constraint (18) or simply learn log κc.
Since the latter leads to a simpler optimization, it should be
favored. A similar observation can be made for (12), which
is the only equation to constrain ψc.

On the other hand, some of the relationships must be
enforced to maintain the MFA-FV interpretation. These
are (16), (17), and the fact that Pc is a symmetric matrix.
These relationships can be enforced by adding regulariza-
tion terms to the loss function used to train the network.
Given a training set D = {(xi, yi)} this leads to a loss func-
tion

L(D) = Lc(D) + λ1
∑

c

||Ωc − PcΛc||
2
F

+ λ2
∑

c

||Pc − PT
c ||2F (26)

where ||A||F is the Frobenius norm of A, the last two terms
are the regularizers that enforce the constraints and Lc(.) is
a standard classification loss. In our implementation this is
the hinge loss

Lc(D) =
1

N

N
∑

i=1

C
∑

c=1

[max(0, 1− δ(yi = k)sk(xi)]
p

(27)
where s(x) is the input to the softmax at the top of the
network, δ(·) the indicator function (1 when the argument
holds and zero otherwise), and λ1,λ2 two parameters used

5750

Table 1. Effect of initialization on MFAFVNet classification accuracy.

Initialization MIT Indoor SUN

AlexNet

Random 69.82 50.23
Pre-Trained MFA 71.44 54.14

VGG-16

Random 77.3 56.2
Pre-Trained MFA 80.3 62.51

to control the strength of the regularization. In our imple-
mentation we use p = 2. The choice of the hinge loss
is mostly for consistency with the Fisher vector literature,
which is mostly based on SVMs. Any other classification
loss could in principle be used.

4. Experiments

In this section, we report on an extensive experimental
evaluation of the MFAFVNet.

4.1. Experimental Setup

Datasets: All experiments were based on the 67 class
MIT Indoor scenes dataset [22] and the 397 class MIT SUN
dataset [28]. MIT Indoor includes 80 images of each cate-
gory for training and 20 images for testing. SUN includes
multiple train/test splits, with 50 images per class in the test-
ing set. We present results for the average accuracy over
splits.

Baselines: The MFAFVNet was compared to eight pre-
vious methods for scene classification. The VLAD of
[11], the Sparse and H-Sparse coding of [17, 18], the Se-
mantic Fisher Vector (SFV) of [5], the full (FBN) and
compact (compact BN) bilinear pooling networks of [7],
the MFA-FS of [6], the Deep FisherNet of [26] and the
MetaClass method of [27]. While most of these methods
[11, 5, 6, 26, 27] present results for both MIT Indoor and
SUN, some [7, 18] only report in MIT Indoor. With the
exception of the Deep FisherNet of [26], all these results
are obtained by simply using features extracted from CNN
layers, without any finetuning of the network. We simple
restate their result. [26] did not address scene classifica-
tion, only presenting results for object detection on PAS-
CAL VOC 2012. We implemented the network as described
in [26] and present its results on MIT Indoor and SUN.

Implementation Details: The MFAFVNet was imple-
mented with three different object recognition networks
trained on ImageNet [4]: Alexnet [13], VGG-16, and VGG-
19 [24]. The object class probability vectors produced by
these networks, per l × l patch, was converted to its natural

Table 2. Effect of regularization strength on MFAFVNet classifi-

cation accuracy.

AlexNet

λ 0.01 0.1 1 10 100

Accuracy 70.69 71.11 71.44 71.42 71.43

VGG-16

λ 0.01 0.1 1 10 100

Accuracy 79.79 80.19 80.3 80.12 80.14

parameter form, as described in [5], to generate the vec-
tor p(x) of Figure 3. The PCA layer reduced this 1, 000
dimensional vector to the one with 500 dimensions, which
was used to compute the MFA-FV. Input images were re-
sized, by making the smaller side 512-pixel long and main-
taining the original aspect ratio. Three patch sizes, l ∈
{96, 128, 160} were used, producing between 590 and 1000
patches per image.

The MFA contained 100 mixture components and a 10
dimension latent variable subspace. This produced a vector
of 500× 100× 10 dimensions at the output of the MFA-FV
layer. The parameters of the fully connected layer (FC9)
at the network output were initialized randomly. The ini-
tialization of the resulting parameters is discussed below.
Layer FC9 was learned with a learning rate of 0.001 and
all other layers with a learning rate of 0.00001. Momen-
tum and weight decay were set to 0.9 and 0.0005 respec-
tively. For both datasets, the complete network was trained
on 10 epochs. As is costumary in the literature, some results
are presented for the combination of the MFA-FV and the
Places network [29], a network learned on the large Places
scene dataset. In this case, the output of the L2 normal-
ization layer of the MFAFVNet was concatenated with the
output of the penultimate layer of the Places network.

4.2. Parameter Initialization

Our experiments have shown that a good initialization
of the the PCA and MFA-FV layers can lead to substantial
gains in classification accuracy. The PCA layer was initial-
ized by a PCA transformation learned from all patches at
the output p(x) of Alexnet or VGG. The low dimensional
vectors at the output of the PCA layer were then used to
learn the MFA parameters with the EM algorithm of [8].
Table 1 compares this initialization to one where all param-
eters are randomly initialized with a zero mean Gaussian
distribution of standard deviation 0.01. The results in the
table refer to a single patch size of 96 and λ1 = λ2 = 1,
but we observed a similar behavior for other configurations.
The performance of the randomly initialized network is 2%
weaker on MIT Indoor and about 4% weaker on SUN. It is
clear that the optimization has strong local minima, and it is
important to rely on an initialization with a strong statistical
interpretation.

5751

Table 3. Effect of patch scale on MFAFVNet classification accuracy. “3 scale” denotes the combination of three scales.

AlexNet VGG-16 VGG-19

MIT Indoor SUN MIT Indoor SUN MIT Indoor SUN

96× 96 71.44 54.14 80.3 62.51 80.5 62.62
128× 128 71.4 54.03 78.44 61.47 79.29 61.48
160× 160 69.89 52.51 78.01 61.22 78.44 61.31
3 scales 75.01 57.15 81.12 64.51 82.66 64.59

4.3. Influence of Regularization

We next investigated the importance of regularization, by
considering different values of λ1 and λ2 in (26). For sim-
plicity, we considered only the case where λ1 = λ2 = λ,
which was also adopted in the remaining experiments. For
small values of λ the network is free to learn a model that
does not reflect the constraints of the MFA-FV, i.e. of weak
statistical significance. For larger λ the parameters reflect
the MFA constraints and the network has a stronger statisti-
cal significance. Table 2 presents results on MIT Indoor for
different values of λ and a single scale patch with l = 96.
There is an improvement of up to 1% when λ increases from
0.01 to 1 and performance stays approximately constant for
larger λ. This shows that it is important to enforce the sta-
tistical significance of the parameters. In all subsequent ex-
periments we have used the value of λ = 1.

4.4. Impact of Multiple Scales

Various recent works [5, 6, 17] have shown that is impor-
tant combine multiple patch scales, since objects of differ-
ent sizes can be informative for scene classification. Table
3 summarizes the effect of patch sizes (l ∈ {96, 128, 160})
on the classification accuracy of the MFAFVNet, for the
three object recognition models. While scale 96 × 96 out-
performs the other two, results improve substantially when
the three scales are combined. This confirms the previous
observations of [5, 6, 17] for the benefits of multi-scale fea-
ture combination.

4.5. Comparison to Object-based Scene Classifiers

Table 4 compares the MFAFVNet to various previous
scene classifiers based on an object recognition network
trained on ImageNet [2, 6, 7, 17, 6, 26, 1]. The FV of [2]
uses both Alexnet and VGG-16 as CNN model and 10 patch
scales. [17] extracts feature vectors at the output of the first
fully connected layer, for a single patch size of l = 128,
and uses them to derive a sparse coding based FV. [6] uses
an MFA-based Fisher vector to pool the local features ex-
tracted from AlexNet, VGG-16, or VGG-19, but has no fine
tuning. [26] simplifies the Fisher vector to allow end to end
training of the network.

The MFAFVNet achieves state-of-the-art results on both
datasets for both networks, even outperforming [2] which
combines patches of ten different scales. The improved per-

formance over [11, 17, 2] is justified by the fact that these
works rely on a FV derived from a Gaussian mixture of di-
agonal covariance and no fine tuning of the network. The
improvements over the sparse coding techniques [17, 18]
suggest that the MFA is a better model for the statistics
of features learned by deep CNNs. Overall, the closest
competitor to the MFAFVNet is [6], which also uses an
MFA-FV but does not support end-to-end network finetun-
ing. The MFAFVNet improves the results of this method
by 1 − 2%, even though [6] concatenates Fisher vectors of
different patch scales, to form a vector that is three times as
long as that of the MFAFVNet.

Somewhat surprising is the improvement of 6% over the
only other method that tried to train the network end-to-end
[26]. We have found that this is due to their simplification of
the FV, which includes removing the weights of the mixture
components and the normalization terms in the denomina-
tors of the posterior probabilities of (21). A similar sim-
plification of the MFAFVNet incurred losses of significant
magnitude. Note that the simplification is computationally
significant since, as can be seen in Figure 3, these are the
only terms that require inputs from the other mixture com-
ponents k in the softmax of the bottom branch. On the other
hand, these are the only connections that allow the mixture
components to interact with each other. From a statistical
standpoint, in the absence of the normalization, the poste-
rior probabilities are not even probabilities and the model
looses coherence. Note that much of the computation of
EM is aimed to get the posterior probabilities right, since
they determine the mixture assignments of the samples xi.
In fact, the E-step is mostly about getting good estimates of
these probabilities.

4.6. Comparison to Scene Classifiers

[29] trained a network with the same architecture as
Alexnet or VGG for scene image classification directly from
the Places scene dataset. This contains 2.4M scene images.
Comparisons to this network test the effectiveness of rep-
resentations such as the Fisher vector for transfer learning.
Since the dimension of the feature vector extracted by the
Places network is 4096, the dimension of the MFA-FS was
reduced to this value in these experiments1. A comparison
of the two approaches is presented in Table 5. Interest-

1Note that this explains the slight difference to the results in Table 3.

5752

Table 4. Performance of sccene classifiers based on object recognition
models.

Method MIT Indoor SUN

AlexNet-based

Sparse Coding [17] 68.2 -
VLAD [11] 68.88 51.98

FV [5] 72.86 54.4
MFA-FS [6] 73.58 55.95
FV+FC [2] 74.4 -
MFAFVNet 75.01 57.15

VGG-based

Compact BN [7] 76.17 -
Deep FisherNet [26] 76.48 57.91

Full BN[7] 77.55 -
Sparse Coding [18] 77.6 -

H-Sparse [18] 79.5 -
MFA-FS [6] 81.43 63.31
FV+FC [2] 81.0 -
MFAFVNet 82.66 64.59

Table 5. Comparison to a scene classifier learned on Places.

Method MIT Indoor SUN

AlexNet

Places 68.24 54.3
MFAFVNet 74.86 56.96

VGG-16

Places 79.47 61.32
MFAFVNet 80.72 64.08

ingly, the object-based network outperforms the Places net-
work by a significant amount (up to 6%). This is likely due
to the fact that scenes involve complicated combinations of
objects, which may appear at different scales and poses. A
network that is trained holistically, i.e. over the whole im-
age, likely has difficulty in inferring these object cues. On
the other hand, the combination of the object-based network
and the pooling operation of the Fisher vector is basically
just learning the statistics of object appearances and some
aspects of their configurations in the scene, e.g. relative
properties such objects that appear at different sizes in a
class of scenes. In any case, these results show that objects
are informative for scene classification. As far as we know,
this is also the only task on which transfer learning outper-
forms the training of a deep network directly from a large
dataset of the target domain.

4.7. Combined networks

It is also possible to combine the object- and scene-
based models. This is, in fact, done in most previous works
and shown to improve performance. Following the stan-
dard practice in these experiments, we concatenate the fea-
ture vectors extracted by the two networks and classify

Table 6. Performance of combinations of object-based and scene-

based scene classifiers.
Method MIT Indoor SUN

AlexNet

MetaClass+Places [27] 78.9 58.11
FV+Places [5] 79.0 61.72

MFA-FS+Places [6] 79.86 63.16
MFAFVNet+Places 80.47 64.1

VGG-16

Deep FIsherNet+Places [26] 78.81 59.7
MFA-FS+Places [6] 87.23 71.06
MFAFVNet+Places 87.97 72.01

the resulting vector with a linear SVM of hyperparameter
Csvm = 2. These experiments did not use VGG-19, which
has not been used in the Places network.

Table 6 shows the results obtained by combining the
two networks. The combination of the Fisher vector with
the holistic scene representations achieves a big improve-
ment (up to 8%) over the performace of either of the rep-
resentations independently, on both MIT Indoor and SUN.
Since the networks capture complementary information -
the scene gist for Places and the object composition of the
scene for the MFAFVNet - this suggests that these two
classes of information are important, even complementary,
for scene classification. Table 6 also shows that, even after
combination with Places, the MFAFVNet achieves the best
results among all Fisher vector representations. These re-
sults are, to the best of our knowledge, the state-of-art for
scene image classification.

5. Conclusion

In this work, we considered the transfer of a deep CNN
trained for object recognition to the task of scene image
classification. An embedded implementation of the MFA-
FV was proposed. This enabled the design of a network
architecture, the MFAFVNet, that can be trained in an end
to end manner. The new architecture is based on a MFA-FV
layer that implements a statistically correct version of the
MFA-FV, through a combination of network computations
and regularization. When compared to previous neural im-
plementations of Fisher vectors, the MFAFVNet relies on
a more powerful statistical model and a more accurate im-
plementation. When compared to previous non-embedded
models, the MFAFVNet relies on a state of the art model,
which is now embedded into a CNN. Experiments have
shown the importance of maintaining a valid statistical in-
terpretation for the network, through proper initialization
and regularization and the benefits of end to end training.
The MFAFVNet achieves state of the art performance on
scene classification, both as an object-based scene model
and when combined with the holistic Places representation.

5753

