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I. Introduction

• Motivations:

– There is an inconsistency between the sizes of objects, which are
variable, and filter receptive fields, which are fixed, in Faster-RCNN
framework.

– Multi-scale detection is not well addressed in CNN based object
detection frameworks.

– The original input images are usually upsampled to boost perfor-
mance, which exponentially increases the memory and computation
costs of the detector.

• Contributions:

– This work proposes a unified multi-scale deep CNN, denoted the
multi-scale CNN (MS-CNN), for fast object detection.

– To ease the inconsistency between the sizes of objects and receptive
fields, object detection is performed with multiple output layers,
each focusing on objects within certain scale ranges.

– Feature upsampling (implemented by a deconvolutional layer) is
used as an alternative to input upsampling, which improves detec-
tion accuracy but adds trivial computation and no parameter.

II. Multi-scale Object Detection
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– Inspired by previous evidence on the benefits of the strategy of (c)
over that of (b), we propose a new multi-scale strategy (g). This can
be seen as the deep CNN extension of (c), but only uses a single scale
of input.

III. Multi-scale Object Proposal Network
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– Each detection branch detects objects that match its scale, and the
combination of those branches forms a strong multi-scale detector.

– objective function:

L(W) =
M∑

m=1

∑

i∈Sm

αmlm(Xi, Yi|W)

where
l(X, Y |W) = Lcls(p(X), y) + λ[y ≥ 1]Lloc(b, b̂)

IV. Object Detection Network
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– unified objective function:

L(W,Wd) =
M∑

m=1

∑

i∈Sm

αmlm(Xi, Yi|W)+
∑

i∈So

αol
o(Xi, Yi|W,Wd)

– Trunk CNN layers are shared with proposal sub-network.

– ROI pooling is applied to the top of the “conv4-3” layer.

– A deconvolutional layer is used to upsample feature maps as an al-
ternative of input upsampling, avoiding issues such as large memory
requirements, slow training and testing.

– Object and context regions are stacked together immediately after
ROI pooling, followed by an extra convolutional layer to compress
redundant information and avoid parameters increase.

V. Experimental Results

• Datasets

– KITTI: 7,481 images (1250×375) for training and 7,518 for testing,
no testing ground truth is available.

– Caltech: 32,077 images (640×480) for training and 4,024 for testing.

• Proposal comparison

– achieves a recall about 98% with only 100 proposals of high quality.
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• Ablation study

– input size, feature upsampling, context embedding

Model Time # params Car Pedestrian
h384 0.11s 471M 80.63 68.37
h576 0.22s 471M 88.14 70.77
h768 0.41s 471M 88.88 72.26

h576-2x 0.23s 471M 89.12 72.49
h576-ctx 0.24s 863M 88.88 71.45

h576-ctx-c 0.22s 297M 89.13 72.13

• Comparison on KITTI

– set a new record for the detection of pedestrians and cyclists, and
ranked top 1 for cars among published works.

Methods Time Car Pedestrian Cyclist
Faster-RCNN 2s 81.84 65.90 63.35

Regionlets 1s 76.45 61.15 58.72
3DOP 3s 88.64 67.47 68.94

SDP+RPN 0.4s 88.85 70.16 73.74
Mono3D 4.2s 88.66 66.68 66.36
MS-CNN 0.4s 89.02 73.70 75.46

• Comparison on Caltech

– achieves state-of-the-art performance, high detection rate, robust to
small and occluded pedestrians.
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94.7% VJ
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98.7% VJ
84.5% HOG
47.3% ACF−Caltech+
43.2% LDCF
39.2% SpatialPooling+
36.2% Checkerboards
25.1% CompACT−Deep
19.9% DeepParts
19.2% MS−CNN

• Real-time running speed

– up to 10 fps on KITTI (1250×375) and 15 fps on Caltech (640×480)
images.

• Reproducible research
– https://github.com/zhaoweicai/mscnn


