A UNIFIED MULTI-SCALE DEEP CONVOLUTIONAL NEURAL NETWORK FOR FAST OBJECT DETECTION

Zhaowei Cai¹, Quanfu Fan², Rogerio Feris², and Nuno Vasconcelos¹ ¹UC San Diego, ²IBM Watson Research

- framework.
- Multi-scale detection is not well addressed in CNN based object detection frameworks.
- The original input images are usually upsampled to boost performance, which exponentially increases the memory and computation costs of the detector.
- Contributions:
 - This work proposes a unified multi-scale deep CNN, denoted the multi-scale CNN (MS-CNN), for fast object detection.
 - To ease the inconsistency between the sizes of objects and receptive fields, object detection is performed with multiple output layers, each focusing on objects within certain scale ranges.
 - Feature upsampling (implemented by a deconvolutional layer) is used as an alternative to input upsampling, which improves detection accuracy but adds trivial computation and no parameter.

- Each detection branch detects objects that match its scale, and the combination of those branches forms a strong multi-scale detector.
- objective function:

$$\mathcal{L}(\mathbf{W}) = \sum_{m=1}^{M} \sum_{i \in S^m} \alpha_m l^m(X_i, Y_i | \mathbf{W})$$

where
$$l(X, Y | \mathbf{W}) = L_{cls}(p(X), y) + \lambda[y \ge 1] L_{loc}(b, \hat{b})$$

IV. OBJECT DETECTION NETWORK

Inspired by previous evidence on the benefits of the strategy of (c) over that of (b), we propose a new multi-scale strategy (g). This can be seen as the deep CNN extension of (c), but only uses a single scale of input.

 $m = 1 \ i \in S^m \qquad \qquad i \in S^o$

- Trunk CNN layers are shared with proposal sub-network.
- ROI pooling is applied to the top of the "conv4-3" layer.
- A deconvolutional layer is used to upsample feature maps as an alternative of input upsampling, avoiding issues such as large memory requirements, slow training and testing.
- Object and context regions are stacked together immediately after ROI pooling, followed by an extra convolutional layer to compress redundant information and avoid parameters increase.

V. Experimental Results

• Datasets

0.8¹

- -KITTI: 7,481 images (1250×375) for training and 7,518 for testing, no testing ground truth is available.
- -Caltech: 32,077 images (640×480) for training and 4,024 for testing.

• Proposal comparison

 $-\,{\rm achieves}$ a recall about 98% with only 100 proposals of high quality.

- set a new record for the detection of pedestrians and cyclists, and ranked top 1 for cars among published works.

Methods	Time	Car	Pedestrian	Cyclist
Faster-RCNN	2s	81.84	65.90	63.35
Regionlets	1s	76.45	61.15	58.72
3DOP	3s	88.64	67.47	68.94
$\mathrm{SDP}\mathrm{+RPN}$	0.4s	88.85	70.16	73.74
Mono3D	4.2s	88.66	66.68	66.36
MS-CNN	0.4s	89.02	73.70	75.46

• Ablation study

- input size, feature upsampling, context embedding

Model	Time	# params	Car	Pedestrian
h384	0.11s	471M	80.63	68.37
h576	0.22s	$471\mathrm{M}$	88.14	70.77
h768	0.41s	$471\mathrm{M}$	88.88	72.26
h576-2x	0.23s	471M	89.12	72.49
h576-ctx	$0.24\mathrm{s}$	863M	88.88	71.45
h576-ctx-c	0.22s	297M	89.13	72.13

• Comparison on KITTI

- Comparison on Caltech
 - achieves state-of-the-art performance, high detection rate, robust to small and occluded pedestrians.

• Real-time running speed

- up to 10 fps on KITTI (1250×375) and 15 fps on Caltech (640×480) images.
- Reproducible research

- https://github.com/zhaoweicai/mscnn

