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A. Real World VQA System
As discussed in the main paper, despite that most recent

VQA models have superior performance on AQs, they fail
to detect UQs and underperform the proposed methods in
terms of AUAF and FF95. To further evaluate these re-
cent classifiers deployed in the real-world VQA system, we
investigate the robustness of BLIP [18] under RVQA set-
ting, using their online demo. We use their provided exam-
ple image and GQA image as visual inputs and ask several
unanswerable questions. As shown in Fig. A1, when the
user enters a question with objects that do not appear in the
image, the model cannot reject or provide further instruction
to the user. This shows that models optimizing for better AQ
performance does not address the problem of RVQA, which
hinders the application of real-world VQA system.

B. Training with Hard Pseudo UQs
Additional details for training the VQA classifiers on

only hard pseudo UQs are provided. The hard pseudo UQs
are the UQ pairs with higher CLIP similarity scores. We use
CLIP to rank the questions for each image according to the
similarity and select only top-1, 000 questions to construct
image-question pairs. As shown in Table H1, we observe
that model that only trains on hard pseudo UQs performs
similarly to our best model on CLIP-Hard and PT-Hard.
However, the performance degrades significantly in terms
of AUAF by around 7 and 10 points on CLIP-Easy and PT-
Easy, respectively. This highlights the need for a dataset
with broader coverage of UQ difficulty and indicates that
overfitting VQA models on hard pseudo UQs will not ad-
dress the problem of RVQA in general.

C. Training and Evaluation Details
In this section, the training and evaluation de-

tails of the experiments are discussed. The train-
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ing is conducted using PyTorch [23] for all the
experiments. For evaluating different OOD meth-
ods, we adopt the VQA classifier of BUTD [1] from
https://github.com/siddk/vqa-outliers,
LXMERT [25] from https://github.com/
airsplay/lxmert and Uniter [4] from https:
//github.com/ChenRocks/UNITER and https:
//github.com/YIKUAN8/Transformers-VQA.
Both LXMERT and Uniter are initialized from pre-
trained weights. For BUTD/LXMERT/Uniter, we used
the optimizer of Adamax/Adam/Adam, respectively.
The learning rate for BUTD/LXMERT/Uniter is set as
2e−3/1e−5/1e−5, respectively. For RoI Mixup, we select
β as 0.7/5/3 for BUTD/LXMERT/Uniter. Since VQA mod-
els use the BCE loss, methods adapted from OOD literature
are based on the implementation of this multi-label OOD
github. We also use CLIP from huggingface and POS
tagger from Spacy to process the text.

For the comparison of 9 different VQA classifiers [9,
25, 1, 4, 29, 20, 13, 18, 14], we further adopt the pre-
trained checkpoint on GQA of SwapMix [9], Oscar [20],
VinVL [29] and MDETR [13] from their official github
links. We also finetune Vilt on GQA following the pro-
cedure in [13, 20], because Vilt [14] only released the
checkpoint from its pretraining stage and does not have
checkpoint finetuned on GQA. For BLIP [18], we directly
downloaded its checkpoint from their github link, which is
trained on Visual Genome [15] and VQA2.0 [8] dataset.
Due to the computation constraint of our GPU cluster, we
are not able to finetune BLIP on GQA. However, since GQA
is also built on Visual Genome, we measure the GQA per-
formance of BLIP without fine-tuning its checkpoint. Note
that BLIP supports open-ended VQA, so we follow its VQA
setting and use its decoder to rank the GQA candidate an-
swers (rank 1 is selected as prediction). The comparison
between different VQA classifiers uses the maximum prob-
ability (MSP) as UQ/AQ criterion.

https://huggingface.co/spaces/Salesforce/BLIP
https://github.com/siddk/vqa-outliers
https://github.com/airsplay/lxmert
https://github.com/airsplay/lxmert
https://github.com/ChenRocks/UNITER
https://github.com/ChenRocks/UNITER
https://github.com/YIKUAN8/Transformers-VQA
https://github.com/YIKUAN8/Transformers-VQA
https://github.com/deeplearning-wisc/multi-label-ood
https://huggingface.co/
https://spacy.io/
https://github.com/salesforce/LAVIS


Figure A1: Illustration of the RVQA problem in real-world VQA system
using the BLIP [18] demo website. The top image is provided on BLIP’s
demo website and the rest are GQA images.

D. Additional RGQA Details

Dataset Annotation. As mentioned in Sec. 3.1, the can-
didate UQs are passed to the annotators. The annotators are
asked to read the instruction with few AQs (i.e. Valid) and
UQs (i.e. Invalid) examples, as shown in Fig. D1(a). Af-
ter reading the instruction, the annotator is given the tasks,
where 2 questions in random order and an image are given.
One of the questions requires annotation, while the other
question is the “filter question”. The filter question is used
to ensure that the annotator fully comprehends the task and
is paying attention during the process. Some examples of

the task are shown in Fig. D1(b-e). Take Fig. D1(b) for
example. 2 questions are presented to the annotator and the
first question “Is there a tv stand?” is the filter question. The
annotator is expected to answer “valid” for the filter ques-
tion since it is an answerable question with answer “No”.
Fig. D1(d) is another example, where the filter question of
“What color is the hills above the cat?” is shown on the
second question. Obviously, the annotator is expected to
answer “invalid”, because there is no hill above the cat in
the image.

More specifically, the filter question is guaranteed to be
either answerable or unanswerable. To create filter ques-
tions automatically, we extract all the object names from the
annotated scene graph in GQA [11] and curate a set of ob-
ject names. For the candidate set of answerable filter ques-
tions, the template of “Are/Is there a ⟨obj⟩?” is used, where
⟨obj⟩ is a randomly selected object from the object set. Fur-
thermore, the candidate set of answerable filter questions
is augmented with “”Is this indoor or outdoor?”, “Is this a
color image?” and “What place is this ?” to increase the di-
versity of answerable filter questions.

For the candidate set of unanswerable questions, we
adopt the template of “What color is the ⟨obj0⟩ ⟨rel⟩ the
⟨obj1⟩?”, where ⟨obj0⟩ and ⟨obj1⟩ are 2 randomly selected
objects from the object set and the ⟨rel⟩ is a randomly se-
lected relation from a set of predefined relations (e.g. next
to, around, under, on and above).

AQ vs UQ Ratio. As mentioned in the main paper, each
UQ is paired with an AQ. However, this could result in du-
plicated AQs, because the number of UQs could be larger
than that of AQs for some images. As a result, the dupli-
cated AQs are removed from the proposed dataset, which
explains the reason that the proportion of UQ in the main
paper is around 52%.

AQ vs UQ Question Structure We further analyze the
difference between AQ and UQ from its question structure.
This is done by plotting the distribution of questions by the
first three words, as shown in Fig. D2, While the three most
popular words (“Are”, “Who” and “Which”) in AQs and
UQs have minor difference in their order and proportions,
there are no major differences between the question struc-
ture of AQ (Fig. D2(a)) and UQ (Fig. D2(b)). This indicates
that AQs/UQs cannot be easily separated by word frequency
and distribution.

Conflicting Candidate UQs Removal: Conflicting
Candidate UQs like “What color are the black shoes?” are
filtered using predefined rules. For example, for a question
asking about color, a program checks whether the answer
(i.e. black) is in the text.

CLIP Bias: We notice that CLIP might have a bias when
producing UQs (e.g. confuses attributes of multiple objects
in the same image [26]). We prevent these biases by intro-
ducing PT-based UQs and using human annotators to con-



(a) Instruction to the annotators.

(b) Example 1 (c) Example 2

(d) Example 3 (e) Example 4
Figure D1: The annotator is asked to read the instruction in (a). (b-e) are the task that are assigned to the annotator. See text in Sec. D for more details.



(a) Answerable question (AQ) (b) Unanswerable question (UQ)
Figure D2: Distribution of questions by first three words for all subsets in RGQA. The white regions are marginal probabilities for those less populated
words.

firm the validity of UQs. Obviously, there could be other
biases, e.g. a preponderance of certain types of objects in
the dataset. The characterization of these is a project in it-
self and left for future work.

E. Additional Related Work

Visual language pretraining (VLP) [29, 14, 20, 30, 17,
19, 22, 21, 6, 4, 25, 18] has been a dominated manner to
learn generalizable multi-modal feature for visual language
task. During the pre-training stage, the models are usu-
ally trained on self-supervised tasks: (a) masked language
modeling, (b) masked image modeling, and (c) image-text
matching. For (a) and (b), the model predicts the masked
words and masked patches using the rest of the unmasked
text and image. For (c), the image and text are randomly
paired and the model is asked whether the pair are matched.
The universal feature from the pre-training stage are shown
to be applicable to various downstream tasks, including im-
age captioning [14, 30, 29], visual grounding [4, 6, 10, 13]
and VQA [22, 25, 21]. For more detailed related work,
please refer to recent surveys [5, 24].

Despite that most of the recent VQA models [22, 25, 21,
30, 29, 20, 19, 21, 6, 4] are fine-tuned after VLP, there is no
evidence that these model are robust toward UQ. Our exper-
iments analyze the SoTA VQA models [25, 4, 20, 29, 18]
and found their vulnerability to the UQs. This is surpris-
ing since the proxy task of image-text matching is opti-
mized during the pretraining stage. In this work, we pro-
posed a new training scheme specifically tailored for the
RVQA task, which does not require any annotated UQs dur-

ing training and is robust to UQ during inference.
Mixup Inspired by the mixup data augmentation [28, 27,

3], we proposed RoI mixup to encourage the RVQA model
to be aware of the fine-grain mismatch between image and
text. While the proposed RoI mixup is similar to [9] and [2],
the goal is entirely different.[9] mitigates the reliance of the
VQA model on irrelevant background, while [2] mixes ob-
ject features of the same classes from different domains, to
achieve domain invariance between synthetic and real VQA
datasets. Our aim is to detect UQs, which these methods
cannot. For example, although [9] leverages scene graph
annotation of objects ”relevant” to the text, to swap object
features, it fails to detect UQs, as shown in the experiment
section. No additional annotation is needed for the proposed
RoI Mixup.

VQA-OOD While there are certain similarities between
OOD and realistic VQA, they are different. [7, 16, 12] ad-
dress OOD where the distributions of training and test set
are different. However, there is no answer for UQs, so
[7, 16, 12] are not applicable to the proposed RVQA task.

F. GQA test set performance
The goal of realistic VQA is to detect the UQs without

sacrificing the VQA performance on AQs. To ensure that
the proposed training strategy does not degrade the VQA
performance, we report the accuracy of the GQA test set.
As shown in Table F1, the original LXMERT [25] achieves
77.8 accuracy, while the proposed RP and Mix have similar
performance. We also report the accuracy for binary (e.g.
yes/no) questions and open questions.



Table F1: GQA test set performance without rejections. The backbone is
LXMERT.

Methods Accuracy Binary Open
Original 77.8 45.0 60.3

RP 76.3 45.6 60.0
Mix 77.1 45.8 60.5
Ens 77.1 46.2 60.7

G. Additional examples from RGQA
We show more examples from RGQA in Figure H1,

where (a-d), (e-h), (i-l) and (m-p) are CLIP-Hard, PT-Hard,
CLIP-Easy, and PT-Easy, respectively.

H. Social Impact and Future Work
Social Impact: In this work, we study the problem of re-
alistic VQA and proposed a new dataset containing UQs to
evaluate the existing VQA classifiers. Note that the goal is
not to falsify the VQA system, but to evaluate and improve
the robustness of the existing system to the UQ. We plan to
expand the proposed dataset with more diverse types of UQ
and include more annotations, such as the category of UQs.
We hope this dataset will encourage more research on the
realistic VQA.
Future Work: While we have evaluated the open-ended
VQA model (See BLIP experiment) on the proposed
dataset, we would like to further explore open-ended VQA
in the future, especially by allowing the model to explain
why a question is a UQ. However, this might require further
annotations. Hence, we see this as a direction for future
work. Another direction is to compare the distribution be-
tween the proposed RGQA dataset and the unanswerable
question collected from the real-world system.



CLIP-hard: Are the 
cabinets below the 
stove wooden and open?

CLIP-hard: Is the 
black bag to the left 
or to the right of the 
bed?

CLIP-hard: Do the 
snowpants look black 
and long?

CLIP-hard: What is 
around the open 
window?

(a) (b) (c) (d)

PT-hard: What is the 
surfing person in 
front of?

PT-hard: Does the 
rolled meat on the 
stacked plate look 
roasted?

PT-hard: Which kind of 
small device is pink?

PT-hard: What is the 
item of furniture to 
the left of the light 
white couch?

(e) (f) (g) (h)

CLIP-easy: Is the color 
of the keyboard the same 
as the color of the 
plant?

CLIP-easy: On which side 
is the doll?

CLIP-easy: Are the 
baseball mitt and the 
belt the same color?

CLIP-easy: Which kind of 
vegetable is on top of 
the cutting board?

(i) (j) (k) (l)

PT-easy: On which side 
of the photo is the 
huge man?

PT-easy: Is the mirror
in front of the cap
clean and metallic?

PT-easy: What kind of 
containers does the 
map lie on top of?

PT-easy: What is 
parked near the piano
the nearest traffic 
light is across from?

(m) (n) (o) (p)
Figure H1: More examples from RGQA dataset across 4 different subsets.



Table H1: Comparison between different RVQA approaches. Larger AUAF and smaller FPR@95 is better. Cells with light cyan background denote training
with pseudo UQs.

CLIP-Easy CLIP-Hard PT-Easy PT-Hard Avg.
RVQA Approaches AUAF FF95↓ FACC AUAF FF95↓ FACC AUAF FF95↓ FACC AUAF FF95↓ FACC AUAF

BUTD [1]
FRCNN 33.58 93.28 53.50 30.73 93.94 53.08 31.43 93.77 53.02 26.94 94.65 51.31 30.67

MSP 38.45 64.75 53.50 36.13 79.14 53.08 37.83 66.05 53.02 33.60 83.11 51.31 36.50
ODIN 38.47 64.66 53.53 36.14 79.19 53.11 37.80 66.14 52.97 33.60 83.41 51.33 36.50
Maha 30.05 80.66 48.76 25.75 92.16 48.42 25.34 94.90 47.70 23.93 95.43 46.39 26.26

Energy 38.47 64.14 53.50 36.19 79.42 53.08 37.77 66.12 53.02 33.67 82.99 51.31 36.52
Q-C 53.04 3.48 53.50 36.20 69.25 53.08 47.14 42.18 53.02 29.06 85.65 51.31 41.36

Resample 40.25 65.23 56.20 37.73 79.64 55.45 39.54 66.43 55.41 34.78 83.73 53.79 38.07
RP(w/ hard UQ) 43.74 66.33 56.04 43.27 70.38 55.40 37.62 81.98 55.21 36.17 84.97 53.81 40.2

RP(Ours) 56.31 1.82 56.64 44.09 56.57 55.66 50.51 27.41 55.03 37.18 80.38 53.88 47.02
Mix(Ours) 56.85 1.65 57.17 44.70 58.84 56.59 51.27 29.28 55.99 37.59 83.41 55.24 47.60
Ens(Ours) 57.25 1.31 57.50 45.46 56.04 56.90 51.95 24.69 56.02 38.46 80.08 54.85 48.28

UNITER [4]
FRCNN 35.81 93.28 57.08 33.09 93.93 57.10 33.67 93.77 56.82 28.82 94.68 55.08 32.84

MSP 40.03 73.15 57.08 39.42 80.48 57.10 41.45 61.76 56.82 35.17 83.52 55.08 39.01
ODIN 40.04 73.22 57.12 39.43 80.48 57.15 41.45 61.83 56.85 35.16 83.54 55.06 39.02
Maha 37.52 67.07 55.38 33.74 81.09 54.88 35.87 63.98 54.68 31.68 85.78 52.80 34.70

Energy 40.10 71.45 57.08 39.42 79.78 57.10 41.41 61.31 56.82 35.19 83.63 55.08 39.03
Q-C 56.61 3.53 57.08 38.67 69.56 57.10 50.12 45.64 56.82 30.93 86.18 55.08 44.08

Resample 58.66 0.755 58.85 48.08 47.10 57.60 53.65 22.42 57.48 39.84 73.46 55.33 50.05
RP(w/ hard UQ) 44.92 70.71 59.02 47.14 59.81 57.91 41.89 70.89 58.36 37.92 80.19 55.70 42.96

RP(Ours) 58.35 0.615 58.49 48.37 47.08 57.69 54.42 20.43 57.83 40.27 73.20 55.44 50.35
Mix(Ours) 59.08 0.615 59.37 49.00 47.00 58.06 54.63 21.44 58.08 41.50 73.29 56.68 51.05
Ens(Ours) 59.62 0.58 59.82 49.65 46.71 58.84 55.79 20.08 59.11 42.14 72.71 57.17 51.8

LXMERT [25]
FRCNN 38.43 93.21 60.87 35.22 93.88 60.49 35.73 93.72 59.94 31.00 94.62 58.76 35.09

MSP 42.39 76.25 60.87 42.60 78.92 60.49 47.30 61.79 59.94 38.12 85.14 58.76 42.60
ODIN 42.41 76.43 60.92 42.59 78.96 60.46 47.33 61.97 59.97 38.12 84.78 58.73 42.61
Maha 57.68 9.79 58.98 44.96 61.09 58.16 49.44 44.43 57.27 39.25 75.25 56.29 47.83

Energy 38.76 76.88 60.87 42.11 78.85 60.49 47.00 61.84 59.94 37.90 85.53 58.76 41.44
Q-C 60.39 3.42 60.87 41.31 68.72 60.49 53.11 44.50 59.94 33.18 85.65 58.76 46.99

Resample 60.47 0.58 60.66 50.80 46.49 60.37 55.74 25.30 59.84 42.18 76.78 58.27 52.29
RP(w/ hard UQ) 53.60 40.44 60.15 51.39 47.80 59.40 46.95 57.51 58.74 42.96 68.56 57.17 48.72

RP(Ours) 60.51 0.527 60.66 51.49 45.02 60.69 56.08 23.18 59.74 42.53 75.78 58.37 52.65
Mix(Ours) 60.79 0.298 61.03 51.91 43.43 60.67 56.83 22.58 60.40 43.56 73.02 58.64 53.27
Ens(Ours) 61.03 0.351 61.19 52.42 42.84 61.19 56.90 22.40 60.47 43.75 73.01 58.83 53.52
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