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Abstract

A recent trend in motion-based segmentation has been to
rely on statistical procedures derived from Expectation-
Maximization (EM) principles. EM-based approaches have
various attractives for segmentation, such as proceeding by
taking non-greedy soft decisions with regards to the assign-
ment of pixels to regions, or allowing the use of sophisti-
cated priors capable of imposing spatial coherence on the
segmentation. A practical difficulty with such priors is,
however, the determination of appropriate values for their
parameters. In this work, we exploit the fact that the EM
framework is itself suited for empirical Bayesian data anal-
ysis to develop an algorithm that finds the estimates of the
prior parameters which best explain the observed data. Such
an approach maintains the Bayesian appeal of incorporating
prior beliefs, but requires only a qualitative description of
the prior, avoiding the requirement of a quantitative speci-
fication of its parameters. This eliminates the need for trial-
and-error strategies for parameter determination and leads
to better segmentations in less iterations.

1. Introduction

Image segmentation and motion (or optical flow) estima-
tion have been widely studied in the fields of machine vi-
sion and image processing. Due to the difficulty of segmen-
tation, early approaches to optical flow computation sim-
ply disregarded this component of the problem, relying on
smoothness assumptions and regularization to overcome the
ill-posed nature of optical flow estimation. This, however,
resulted in poor motion estimates and imposed strong con-
straints on image analysis. It has been realized more re-
cently that the problem can be solved only by procedures
capable of jointly addressing the two components [3, 7].
This has led to a new generation of algorithms which iterate
between optic flow estimation and segmentation.

The idea is, for a given set of motion parameters and
observed flow, to find the maximum a posteriori (MAP)

1See[9] for an extended version of this paper.

probability estimate of the segmentation; and, given this
segmentation, to find the set of motion parameters which
maximizes the likelihood of the measured flow. Because a
hard-decision (regarding the membership of each pixel in
the image to each of the segmentation classes) is performed
for each iteration of these algorithms, they are sometimes
referred to as clustering or hard-decision algorithms.

From a statistical perspective, such algorithms can be
seen as variations of a stochastic optimization proce-
dure known as the Expectation-Maximization (EM) algo-
rithm [4]. Under the EM framework, segmentation masks
(i.e. which region is responsible for each sample) are seen
as hidden (non-observed) variables and the algorithm finds
the values of the motion parameters that maximize the like-
lihood of the observed data by iterating between two steps.
The E-step estimates the expected values of the hidden vari-
ables given the current values of the motion parameters and
the observed data. The M-step then uses these expected
values to find the set of parameters that maximize the like-
lihood of the data.

Because the region-assignment variables are binary, and
expectations of binary values are equal to the probabilities
of the variables being “on”; the estimates computed in the
E-step are nothing more than the posterior probability of
the region-assignments given the observed optical flow. I.e.
EM is similar to the hard-decision algorithms above, but
proceeds by taking soft-decisions, the MAP estimate of the
segmentation being taken only upon the convergence of the
iterative procedure.

Even though soft-decisions can lead to significantly bet-
ter performance than hard-decisions [12], there are addi-
tional attractives in using EM for segmentation. In particu-
lar, because it provides an elegant statistical framework for
the segmentation problem, EM allows the use of sophisti-
cated priors, such as Markov Random Fields (MRFs) to en-
force spatial coherenceon the segmentation [10, 11]. How-
ever, such priors are typically characterized by parameters
whose values are difficult to determine a priori. In practice,
these parameters are commonly set to arbitrary values, or
adapted to the observed data through heuristic procedures.



In this work, we exploit the fact that the EM framework
is itself suited for empirical Bayesian data analysis [2] and
a well known approximation to the likelihood of MRF pro-
cesses to develop an algorithm that finds the estimates of
the prior parameters which best explain the observed data.
This eliminates the need for trial-and-error strategies for the
determination of these parameters and leads to better seg-
mentations in less EM iterations.

2. Bayesian and empirical Bayesian in-
ference

In this section, we briefly review Bayesian and empirical
Bayesian procedures [2, 8] for making inferences about the
world, given observed image data. Assume that we are try-
ing to make inferences about the world property €, given
the image feature w. Under the Bayesian framework, all
inferences are based on the posteriori density function
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where 7o is a parameter (or set of parameters) which con-
trols the shape of the prior density for the world property.
Under the Bayesian philosophy, properties in the world are
not unknown deterministic quantities, but random variables
characterized by probability densities that express a degree
of prior belief in their possible configurations. The ratio
between the posterior likelihoods of two configurations is
proportional to the ratio of the respective prior likelihoods,
the proportionality factor being dependent on the data. I.e.
observation of the data merely re-scales prior beliefs [6].

It is therefore important, in Bayesian analysis, to get the
prior beliefs right, a task which is generally difficult in prac-
tice. Typically, one does not have absolute certainty about
the shape of the prior density and the parameters that char-
acterize it which, unless known with certainty, must be re-
garded as random variables. That is, unless there is abso-
lute certainty regarding the value of ~,, inferences should
be based on
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instead of on equation (1).

While from a perceptual standpoint such a hierarchical
structure has the appeal of modeling changes of prior be-
lief according to context (different contexts lead to different
values of vg, altering the shape of the density which char-
acterizes prior beliefs), from a computational standpoint it
significantly increases the complexity of the problem. After
all, the parameters of P(+o) are themselves random vari-
ables as well as the parameters of their density functions,
and so on. We are therefore caught on a endless chain
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of conditional probabilities which is computationally in-
tractable.

These issues are generally ignored in practice, where pri-
ors are typically chosen in order to minimize computational
complexity, or set to arbitrary values. The alternative sug-
gested by the empirical Bayesian philosophy is to replace
7o by an estimate 4, obtained as the value which maximizes
the marginal distribution P(w|yo) as a function of ~q. In-
ferences are then based on equation (1) using this estimated
value.

While, strictly speaking, this approach violates the fun-
damental Bayesian principle that priors should not be esti-
mated from data, in practice it leads to more sensible so-
lutions than setting priors arbitrarily, or using priors whose
main justification comes from computational simplicity (the
so-called conjugate priors). More importantly, it provides a
way to break the infinite chain of conditional probabilities
mentioned above, while still allowing for different priors
depending on context. Consider, for example, the task of,
given pictures of a tree, to determine the probability of the
world property “color” (C) from the image feature “pixel
color” (¢). The standard Bayesian solution would be to per-
form inferences based on equation (1) or, in this case,

P(Cle) o P(c|C)P(Cls),

where P(c|C), which is determined by the camera optics
and sensor noise, relates world and pixel colors, and P(C|s)
expresses prior beliefs in tree colors according to the param-
eters s. The main limitation of such model is that it fails to
capture many factors that have an influence on tree colors,
such as geography (leaf colors vary from region to region),
seasonality (leaves are green in the Spring and yellow in the
Fall), etc. Even though a simple prior may be appropriate to
describe the colors of a given type of tree, at a given time of
the year, in a given geographical location, no prior will be
able to describe the colors of all trees, at all locations, for
the entire year. Better models are obviously possible by tak-
ing the route of equation (2), i.e. by considering hyperpri-
orsfor all these factors, at the cost of enduring a significant
increase in complexity.

The empirical Bayesian perspective is to avoid this in-
crease by keeping the simple model P(C|s), but choosing
the parameters s that best explain the data. In this way, even
though not directly, the model can account for the variations
above, as the estimated s will be different for pictures taken
in different seasons, locations, etc. Choosing the s which
maximizes P(c|s) will originate a prior which favors green
colors for pictures taken in the Spring, and yellow colors for
pictures taken in the Fall. In a sense, the empirical Bayesian
approach allows the observer to concentrate on the specifi-
cation the qualitative shape of the prior, letting the quanti-
tative computation of prior parameters be inferred from the
data.



Computationally, the bulk of work associated with em-
pirical Bayesian procedures relies on the search for the prior
parameters that maximize the marginal likelihood P(w|vo).
Because these parameters are related to the observed image
features by the hidden world properties,

P(w]o) = / P(w]Q) P(0)d2,

the problem fits naturally into an EM framework. Thus, in
practice, empirical Bayesian estimates are commonly ob-
tained through EM procedures, which iterate between the
computation of the expected values for the world properties
and the maximization over prior parameters. Therefore, the
empirical Bayesian perspective not only supports the recent
trend towards the application of EM for motion (and tex-
ture) segmentation, but extends it by providing a meaning-
ful way to tunethe priors to the observed data.

3. Doubly stochastic motion model

Our approach to image segmentation is based on linear
parametric motion models, according to which the motion
of the pixels associated with a given object is related to their
image coordinates by

p(x) = ¥(x) ¢, @)

where x = (z,y)7 is the vector of pixel coordinates in the
image plane, p(x) = (pz(x),py(x))T the pixel’s motion,
and ¢ = (ay,-- .,ap)T the parameter vector which char-
acterizes the motion of the entire object. In this work, we
consider the particular case of affine motion where P = 6,
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and equation (3) models each of the components of the mo-
tion vector field as a plane in velocity space.

To account for uncertainties due to the imaging process,
this motion model is embedded in a probabilistic frame-
work, where pixels are associated with classes that have a
one-to-one relationship with the objects in the scene. We as-
sume that, conditional on the knowledge of image I;_; (x)
and the class of pixel x in image I;(x), the observed value
of this pixel is the outcome of an independent identically
distributed Gaussian random process characterized by

PI;(x)|z(x) = e, ¢, T1-1(x)) = )
T O 5 1) ~Tecs (i)

where p;(x) is the prediction of the motion of pixel x ac-
cording to the class’s model, o7 the variance of the pixels
in the class, z(x) a vector of binary indicator variables, and

z(x) = e; (where e; is the i*" vector of the standard unitary
basis) if and only if pixel x belongs to object i.

Dependencies between the class-assignment probabili-
ties of adjacent pixels are modeled by introducing a second-
order MRF as a segmentation prior

Pa(x) =eilz) = Plz(x) = eilz,(x)

= % exp [a; + Bui(x)],  (6)

where z is the random field of indicator vectors z(x), z, (x)
the second-order neighborhood of pixel x (composed by the
eight adjacent pixels), u;(x) the number of neighbors of
pixel x that belong to class ¢, and Z a normalizing constant
or partition function.

This leads to a doubly stochastic motion model. Dou-
bly stochastic random fields using MRFs are the 2-D ex-
tension of Hidden Markov Models (HMMs), and have long
been used for texture modeling and segmentation. In par-
ticular, the prior of equation (6) has been shown to be a
good model for segmentation masks (see for example Fig-
ure 5 of [5]) and extensively used in the texture analysis
literature. It is parameterized by the scalar 8 and the vec-
tora = (a1, g, .. .)T. B controls the degree of clustering,
i.e. the likelihood of more or less class transitions between
neighboring pixels, while the «’s control the relative likeli-
hood of each of the segmentation classes.

4. EM-based parameter estimation

For a typical video sequence, the likelihood of the observed
image data is a complicated function of the segmentation
and motion parameters. This presents a significant chal-
lenge to EM-based algorithms since, given a poor initial es-
timate, EM will get trapped in undesirable local minima.
In order to obtain a robust initial segmentation, we rely on
a procedure which, starting from a collection of locally-
computed motion models, iterates between 1) the merging
of models which are likely to be associated with the same
object, and 2) the elimination of bad models by cross vali-
dation?.

Given this initial estimate for the segmentation map and
the associated motion parameter estimates, the second stage
of our algorithm uses the EM-based empirical Bayesian
learning approach of section 2 and the doubly stochastic
motion model of section 3 to 1) refine these initial estimates,
2) find the MRF prior parameters which best explain the ob-
served motion, and 3) compute the MAP class assignment
for each image pixel.

As mentioned in section 2, the fundamental computa-
tional problem posed by the empirical Bayesian framework
is that of maximizing the marginal likelihood of the ob-

2See [9] for adetailed description of the parameter initialization proce-
dure.



served data as a function of the motion and MRF parameters

P(L|®,1;—1) = ZP(IHZ;‘1’;It—1)P(Z|‘I’,It—1),
where the summation is over all possible configurations of
the hidden assignment variables vector z, ® is the vector
of all motion and MRF parameters, and I; and I; ; are the
observed images. The pair (I;,z) is usually referred to as
the complete data and has log-likelihood

l. =log P(z|I;_1,®)+
+ Zzl Ylog [P(L;(x)|z(x) = e;, ®,1;_1)],

where z;(x) is the i** component of the vector z(x), and
where we have used the class conditional probabilities of
equation (5), the conditional independence of the observa-
tions given the indicator variables, and the binary nature of
z;(x). The EM algorithm maximizes the likelihood of the
incomplete, observed, data by iterating between two steps
which act on the log-likelihood of the complete data.

4.1. The E-step
The E-step computes the so-called @) function defined by

Q(®'|®") = E[l|1;, ] = E[log P(z|I;, ®®)] +
+ZE[zz )L, 2P ]log [P(Iy(x)|z(x) = e;)] (7)

where &) are the parameters obtained in the previous it-
eration and, for simplicity, we have dropped the depen-
dence on I,_;. Under the MRF assumption for the prior
class probabilities, the computation of E[z;(x)|I;, ®®)]
and E[log P(z|T;, ®(®))] becomes analytically intractable,
and can only be addressed through Monte Carlo procedures
such as Gibbs sampling. Such procedures are, however,
expensive from a computational perspective, and nesting a
Gibbs sampler inside the EM iteration would lead to a pro-
hibitive amount of computation. In order to simplify the
problem, we rely on the well known approximation first
proposed by Besag in his iterated coding mode (ICM) pro-
cedure for MAP estimation of MRF parameters [1], and
later used by Zhang et al. in the context of EM-based seg-
mentation [12]. This approximation consists of replacing
the true likelihood by the pseudo-likelihood

HP x) |2 (x ®)

Assuming, further, that the configuration of the MRF does
not change drastically from one iteration of the EM algo-
rithm to the next, the pseudo-likelihood can be approxi-

mated by
H P(z |z(”) )

[11P(z(x) = eil2P) (x))]7>).
It is straightforward to show [12] that, under such approxi-
mation,

P(zi(x) =1|8®)) ~
~ Pu(x) = 1z,(x), @P) =" (x),  (9)

from which

hi(x) = Elz(x)|I,, 8®)] =
_ P(I;(x)|z(x) = e;, 2P)P(z(x) = 1|®?)

>k P(Li(x)|z(x) = ex, @) P(z,(x) = 1|@P)

— P (p)
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where we also used the binary nature of the indicator vari-
ables, and Bayes rule. Notice that the h;(x) are the poste-
rior class assignment probabilities given the observed im-
ages. Given the current estimate of the prior probabilities

7® = (7P (x), 7P (x), .. .)T, and the motion model pa-
rameters in ®®) they are computed by substituting equa-
tion (5) in equation (10).

One possible problem with this computation is that a
pixel whose motion is poorly explained by all the models in
&) will originate zero class-conditional likelinoods and
the corresponding h;(x) will be undefined. To avoid this
problem, we rely on the fact that a pixel which cannot be
explained by any of the models is an outlier, and set the
corresponding h;(x) to zero. Such a solution has the addi-
tional benefit of producing robust estimates without increas-
ing the complexity of the M-step. Once outliers are elimi-
nated, equation (8), and the computed h;’s are substituted
in equation (7), and the @ function becomes

P(zi(x) = 1|1, ®®)

(®'|8) Zh )log P(I;(x)|2(x) = e;) +
+Zh )log P(z(x)|z, (x), ®®). (11)
4.2. The M-step

In the empirical Bayesian framework, the M-step maxi-
mizes the ) function obtained in the E-step with respect
to both the motion and MRF parameters. Substituting equa-
tions (5) and (6) in equation (11), we obtain

Q@#0) = 5 S

- e
+Zh
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[az+ﬂuz( ) IOgZ].



Since the first two terms on the right hand side of this
equation do not depend on «; or 8 and the third term does
not depend on ¢; or o;, the maximization can be separated
into two sub-problems. The first - maximization of @ with
respect to the parameters of the class conditional pdfs - is
a variation of the non-linear least-squares problem found in
optical flow estimation, and is solvable by non-linear opti-
mization techniques. In our implementation, we use a sim-
plified version of Newton’s method leading to the iteration

D = ) _
—1

= D hx)EE) VI () VoL (x) T (x)

x Y h()[L(x) = I, (0] B (%) "V, I (),

(o2 — ZhCIL(0) — Lo (x — E(x)g )P

' > hi(x) ’
where VI is the spatial gradient of I, and I, ,(x) =
L 1(x— \Il(x)qﬁgk) ). The second sub-problem - maximiza-
tion of () with respect to MRF parameters - depends only
on the third term, and can also be solved through standard
non-linear programming methods. In our implementation
we have used gradient ascent, under which the MRF pa-
rameters are updated in the direction of the gradients of the
likelihood function with respect to them

oQ
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where E[u(x)] is the expected number of neighbors of pixel
x that belong to the same class. Once the new values of
the MRF parameters are computed, the prior probabilities
wg”“) are obtained by applying a single cycle of Besag’s
ICM procedure: each pixel is visited in a raster scan order
and, given the configuration of its neighborhood, the corre-
sponding m;(x) are computed using equation (6). It can be
shown that @ is a concave function of «; and /3, guarantee-
ing the existence of a single global maxima and allowing
fast convergence to the optimal value.

It is interesting to analyze the meaning of the equations
above. The new motion parameters are what one would ob-
tain by performing a weighted non-linear least-squares fit
to the motion field that best aligns the two images. The pa-
rameter update does not, however, rely on a greedy binary
segmentation mask which is instead replaced by the poste-
rior class assignment probabilities.

The gradient update equations also have a nice intuitive
meaning. A step in the direction of equation (12) changes
the MRF « parameter so that, at each pixel, the prior class-
assignment probabilities move towards the posterior assign-
ment probabilities obtained from the observed motion. Sim-
ilarly, a step in the direction of equation (13) changes 3 so
that, at each pixel, the expected number of neighbors in the
same state as the pixel is equal under both the prior and the
posterior distributions. I.e. the EM algorithm sets the model
parameters to the values that best explain the observed data,
both in terms of class assignment probabilities and average
number of neighbors in the same state as the neighborhood’s
central pixel.

5. Experimental results and conclu-
sions
In this section, we report on simulation results obtained with

the “Flower Garden” sequence. Figure 1 presents a pair of
frames from the sequence.

Figure 1: A frame-pair from the input video sequence.

Figure 2 illustrates the benefits of the empirical Bayesian
solution to the motion segmentation problem that is now
proposed. As can be seen from the figure, when the MRF
parameters are set arbitrarily, the segmentation depends
critically on the choice of the clustering parameter 3. Small
values of clustering lead to noisy segmentations such as the
one on the top of the figure, while large values of g origi-
nate segmentations with weakly defined region boundaries
(notice the leakage between the house and sky regions and
between the areas of tree detail and sky in the middle pic-
ture).

While it may be possible to obtain better results by a
trial-and-error strategy for the determination of MRF pa-
rameters, we were not able to obtain, in this way, a better
segmentation than the originated by the empirical Bayesian
approach, which is shown at the bottom of the figure. The
better performance of empirical Bayesian estimates can be
understood by considering Figure 3, which presents the evo-
lution of the clustering parameter estimate as a function
of the iteration number (for two different starting points).
Once again, the result of empirical Bayesian parameter
updating makes intuitive sense: while in early iterations



(where uncertainty is high) clustering is small and pixels
are free to wonder between regions, the clustering parame-
ter increases as the EM procedure approaches convergence,
and the segmentation “freezes” when this happens.

Figure 2: Three EM-based motion segmentations. For the top two, the
MRF parameters were set to arbitrary values (top: 8 = 0.2, middle: 8 =
0.7). The bottom one was obtained with the empirical Bayesian parameter
estimates discussed in the text. White pixels are outliers.

Even if such gradual evolution were not required for a
good segmentation, it is not clear that the best trial-and-
error estimate for a given sequence would be a good esti-
mate for a different one. In fact, a review of the texture seg-
mentation literature reveals a wide range of proposals for
the value of 3, which did not include the values that worked
best for us. The point is that using empirical Bayesian es-
timates eliminates the need for tedious trial-and-error pro-
cedures that are not always guaranteed to provide the best
results.
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