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Abstract

The hierarchical representation of data has various applications in do-
mains such as data mining, machine vision, or information retrieval. In
this paper we introduce an extension of the Expectation-Maximization
(EM) algorithm that learns mixture hierarchies in a computationally ef-
ficient manner. Efficiency is achieved by progressing in a bottom-up
fashion, i.e. by clustering the mixture components of a given level in
the hierarchy to obtain those of the level above. This clustering requires
only knowledge of the mixture parameters, there being no need to re-
sort to intermediate samples. In addition to practical applications, the
algorithm allows a new interpretation of EM that makes clear the rela-
tionship with non-parametric kernel-based estimation methods, provides
explicit control over the trade-off between the bias and variance of EM
estimates, and offers new insights about the behavior of deterministic an-
nealing methods commonly used with EM to escape local minima of the
likelihood.

1 Introduction

There are many practical applications of statistical learning where it is useful to characterize
data hierarchically. Such characterization can be done according to either top-down or
bottom-up strategies. While the former start by generating a coarse model that roughly
describes the entire space, and then successively refine the description by partitioning the
space and generating sub-models for each of the regions in the partition; the later start
from a fine description, and successively agglomerate sub-models to generate the coarser
descriptions at the higher levels in the hierarchy.

Bottom-up strategies are particularly useful when not all the data is available at once, or
when the dataset is so big that processing it as whole is computationally infeasible. This
is the case of machine vision tasks such as object recognition, or the indexing of video
databases. In object recognition, it is many times convenient to determine not only which
object is present in the scene but also its pose [2], a goal that can be attained by a hierar-
chical, description where at the lowest level a model is learned for each object pose and all
pose models are then combined into a generic model at the top level of the hierarchy. Sim-
ilarly, for video indexing, one may be interested in learning a description for each frame
and then combine these into shot descriptions or descriptions for some other sort of high
level temporal unit [6].

In this paper we present an extension of the EM algorithm [1] for the estimation of hierar-
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chical mixture models in a bottom-up fashion. It turns out that the attainment of this goal
has far more reaching consequences than the practical applications above. In particular,
because a kernel density estimate can be seen as a limiting case of a mixture model (where
a mixture component is superimposed on each sample), this extension establishes a direct
connection between so-called parametric and non-parametric density estimation methods
making it possible to exploit results from the vast non-parametric smoothing literature [4]
to improve the accuracy of parametric estimates. Furthermore, the original EM algorithm
becomes a particular case of the one now presented, and a new intuitive interpretation be-
comes available for an important variation of EM (known as deterministic annealing) that
had previously been derived from statistical physics. With regards to practical applications,
the algorithm leads to computationally efficient methods for estimating density hierarchies
capable of describing data at different resolutions.

2 Hierarchical mixture density estimation

Our model consists of a hierarchy of mixture densities, where the data at a given level is
described by
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where " is the level in the hierarchy ( " �$#
providing the coarsest characterization of the

data),
�

� the mixture model at this level, % � the number of mixture components that
compose it, � �� the prior probability of the &('�) component, and

�
�� a binary variable that

takes the value 1 if and only if the sample
�

was drawn from this component. The only
restriction on the model is that if node * of level ",+ �

is a child of node - of level " , then
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where & is the parent of * in the hierarchy of hidden variables.

The basic problem is to compute the mixture parameters of the description at level " given
the knowledge of the parameters at level "3+ �

. This can also be seen as a problem of
clustering mixture components. A straightforward solution would be to draw a sample from
the mixture density at level "4+ �

and simply run EM with the number of classes of the level" to estimate the corresponding parameters. Such a solution would have at least two major
limitations. First, there would be no guarantee that the constraint of equation (2) would be
enforced, i.e. there would be no guarantee of structure in the resulting mixture hierarchy,
and second it would be computationally expensive, as all the models in the hierarchy would
have to be learned from a large sample. In the next section, we show that this is really not
necessary.

3 Estimating mixture hierarchies

The basic idea behind our approach is, instead of generating a real sample from the mixture
model at level "5+ �

, to consider a virtual sample generated from the same model, use EM
to find the expressions for the parameters of the mixture model of level " that best explain
this virtual sample, and establish a closed-form relationship between these parameters and
those of the model at level "6+ �

. For this, we start by considering a virtual sample
�7�
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� , where each of the

�>=
is a virtual sample from one of the% �/.

�
components of this model, with size ? = �

� �=A@ , where
@

is the total number of
virtual points.

We next establish the likelihood for the virtual sample under the model
�

� . For this, as is
usual in the EM literature, we assume that samples from different blocks are independent,



i.e.

������� �
�
��� 	��;:�<�= ���

�����>= � �
�
���

(3)

but, to ensure that the constraint of equation (2) is enforced, samples within the same block
are assigned to the same component of

�
� . Assuming further that, given the knowledge

of the assignment the samples are drawn independently from the corresponding mixture
component, the likelihood of each block is given by
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where
� = 0 � �
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�0 is a binary variable with value one if and only if the block
��=

is
assigned to the * '�) component of

�
� , and
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is the � '�) data point in

� =
. Combining

equations (3) and (4) we obtain the incomplete data likelihood, under
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� , for the whole
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This equation is similar to the incomplete data likelihood of standard EM, the main differ-
ence being that instead of having an hidden variable for each sample point, we now have
one for each sample block. The likelihood of the complete data is given by
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where Z is a vector containing all the
� = 0 , and the log-likelihood becomes
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Relying on EM to estimate the parameters of
�

� leads to the the following E-step� = 0 � � � � = 0 � �>= � �
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The key quantity to compute is therefore
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. Taking its logarithm
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where we have used the law of large numbers, and
�(%

�;: <)' � � � ! is the expected value of
�

according the - '�) mixture component of
�

�/.
� (the one from which

� =
was drawn). This

is an easy computation for most densities commonly used in mixture modeling. It can be
shown [5] that for the Gaussian case it leads to
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where + ��� �.- ��/ �
is the expression for a Gaussian with mean

-
and covariance

/
.



The M-step consists of maximizing
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subject to the constraint
" 0 � �0

���
. Once again, this is a relatively simple task for common

mixture models and in [5] we show that for the Gaussian case it leads to the following
parameter update equations
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Notice that neither equation (10) nor equations (12) to (14) depend explicitly on the un-
derlying sample

�>=
and can be computed directly from the parameters of

�
� .

� . The
algorithm is thus very efficient from a computational standpoint as the number of mixture
components in

�
�/.

� is typically much smaller than the size of the sample at the bottom of
the hierarchy.

4 Relationships with standard EM

There are interesting relationships between the algorithm derived above and the standard
EM procedure. The first thing to notice is that by making ? = � �

and
/

�/.
�= � #

, the E
and M-steps become those obtained by applying standard EM to the sample composed of
the points

-
�/.

�= .

Thus, standard EM can be seen as a particular case of the new algorithm, that learns a two
level mixture hierarchy. An initial estimate is first obtained at the bottom of this hierarchy
by placing a Gaussian with zero covariance on top of each data point, the model at the
second level being then computed from this estimate. The fact that the estimate at the
bottom level is nothing more than a kernel estimate with zero bandwidth suggests that
other choices of the kernel bandwidth may lead to better overall EM estimates.

Under this interpretation, the
/

� .
�= become free parameters that can be used to control the

smoothness of the density estimates and the whole procedure is equivalent to the composi-
tion of three steps: 1) find the kernel density estimate that best fits the sample under anal-
ysis, 2) draw a larger virtual sample from that density, and 3) compute EM estimates from
this larger sample. In section 5, we show that this can leave to significant improvements
in estimation accuracy, particularly when the initial sample is small, the free parameters
allowing explicit control over the trade-off between the bias and variance of the estimator.

Another interesting relationship between the hierarchical method and standard EM can
be derived by investigating the role of the size of the underlying virtual sample (which
determines ? =

) on the estimates. Assuming ? =
constant, ? = � ? ��� - , it factors out of

all summations in equations (12) to (14), the contributions of numerator and denominator
canceling each other. In this case, the only significance of the choice of ? is its impact on
the E-step. Assuming, as before, that

/
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we once again have the EM algorithm, but

where the class-conditional likelihoods of the E-step are now raised to the ? '�) power. If



? is seen as the inverse of temperature, both the E and M steps become those of standard
EM under deterministic annealing (DA) 1 [3].

The DA process is therefore naturally derived from our hierarchical formulation, which
gives it a new interpretation that is significantly simpler and more intuitive than those de-
rived from statistical physics. At the start of the process ? is set to zero, i.e. no virtual
samples are drawn from the Gaussian superimposed on the real dataset, and there is no
virtual data. Thus, the assignments

� = 0 of the E-step simply become the prior mixing pro-
portions � �0 and the M-step simply sets the parameters of all Gaussians in the model to the
sample mean and sample covariance of the real sample. As ? increases, the number of
virtual points drawn from each Gaussian also increases and for ? � �

we have a single
point that coincides with the point on the real training sample. We therefore obtain the
standard EM equations. Increasing ? further will make the E-step assignments harder (in
the limit of ? ���

each point is assigned to a single mixture component) because a larger
virtual probability mass is attached to each real point leading to much higher certainty with
regards to the reliability of the assignment.

Overall, while in the beginning of the process the reduced size of the virtual sample allows
the points in the real sample to switch from mixture to mixture easily, as ? is increased
the switching becomes much less likely. The “exploratory” nature of the initial iterations
drives the process towards solutions that are globally good, therefore allowing it to escape
local minima.

5 Experimental results

In this section, we present experimental results that illustrate the properties of the hierar-
chical EM algorithm now proposed. We start by a simple example that illustrates how the
algorithm can be used to estimate hierarchical mixtures.
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Figure 1: Mixture hierarchy derived from the model shown in the left. The plot relative to each
level of the hierarchy is superimposed on a sample drawn from this model. Only the one-standard
deviation contours are shown for each Gaussian.

The plot on the left of Figure 1 presents a Gaussian mixture with 16 uniformly weighted
components. A sample with 1000 points was drawn from this model, and the algorithm
used to find the best descriptions for it at three resolutions (mixtures with 16, 4, and 2
Gaussian). These descriptions are shown in the figure. Notice how the mixture hierarchy
naturally captures the various levels of structure exhibited by the data.

This example suggests how the algorithm could be useful for applications such as object
recognition or image retrieval. Suppose that each of the Gaussians in the leftmost plot of
the figure describes how a given pose of a given object populates a 2-D feature space on

1DA is a technique drawn from analogies with statistical physics that avoids local maxima of the
likelihood function (in which standard EM can get trapped) by performing a succession of optimiza-
tions at various temperatures [3].
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Figure 2: Object recognition task. Left: 8 of the 100 objects in the database. Right: computational
savings achieved with hierarchical recognition vs full search.

which object recognition is to be performed. In this case, higher levels in the hierarchical
representation provide a more generic description of the object. E.g. each of the Gaussians
in the model shown in the middle of the figure might provide a description for all the
poses in which the camera is on the same quadrant of the viewing sphere, while those
in the model shown in the right might represent views from the same hemisphere. The
advantage, for recognition or retrieval, of relying on a hierarchal structure is that the search
can be performed first at the highest resolution, where it is much less expensive, only the
best matches being considered at the subsequent levels.

Figure 2 illustrates the application of hierarchical mixture modeling to a real object recog-
nition task. Shown on the left side of the figure are 8 objects from the 100 contained in the
Columbia object database [2]. The database consists of 72 views (obtained by positioning
the camera in

���
intervals along a circle on the viewing sphere), which were evenly sepa-

rated into a training and a test set. A set of features was computed for each image, and a
hierarchical model was then learned for each object in the resulting feature space. While
the process could be extended to any number of levels, here we only report on the case of
a two-level hierarchy: at the bottom each image is described by a mixture of 8 Gaussians,
and at the top each mixture (also with 8 Gaussians) describes 3 consecutive views. Thus,
the entire training set is described by 3600 mixtures at the bottom resolution and 1200 at
the top.

Given an image of an object to recognize, recognition takes place by computing its pro-
jection into the feature space, measuring the likelihood of the resulting sample according
to each of the models in the database, and choosing the most likely. The complexity of
the process is proportional to the database size. The plot on the left of Figure 2 presents
the recognition accuracy achieved with the hierarchical representation vs the corresponding
complexity, shown as a percent of the complexity required by full search. The full-search
accuracy is in this case � #�� , and is also shown as a straight line in the graph. As can be
seen from the figure, the hierarchical search achieves the full search accuracy with less than� #��

of its complexity. We are now repeating this experiments with deeper trees, where we
expect the gains to be even more impressive.

We finalize by reporting on the impact of smoothing on the quality of EM estimates. For
this, we conducted the following Monte Carlo experiment: 1) draw 200 datasets � = � - ����289828!�
	�#�#

from the model shown on the left of Figure 1, 2) fit each dataset with EM, 3)
measure the correlation coefficient � = � - �
� �989828!�
	�#�#

between each of the EM fits and
the original model, and 4) compute the sample mean �� and variance �
�� . The correlation
coefficient is defined by � = �����3��� � �� = �
� ��� ��� �����3��� ��� ��� �� = ��� ��� ���

, where
�3�
� �

is the
true model and

� = ��� �
the - '�) estimate, and can be computed in closed form for Gaussian
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Figure 3: Results of the Monte Carlo experiment described on the text. Left: �� as a function ��� .
Right: ���� as a function of ��� . The various curves in each graph correspond to to different sample
sizes.

mixtures. The experiment was repeated with various dataset sizes and various degrees of
smoothing (by setting the bandwidth of the underlying Gaussian kernel to 
	���
 for various
values of 
 � ).

Figure 3 presents the results of this experiment. It is clear, from the graph on the left, that
smoothing can have a significant impact on the quality of the EM estimates. This impact
is largest for small samples, where smoothing can provide up to a two fold improvement
estimation accuracy, but can be found even for large samples.

The kernel bandwidth allows control over the trade-off between the bias and variance of
the estimates. When 
 � is zero (standard EM), bias is small but variance can be large, as
illustrated by the graph on the right of the figure. As 
 � is increased, variance decreases at
the cost of an increase in bias (the reason why for large 
 � all lines in the graph of the left
meet at the same point regardless of the sample size). The point where �� is the highest is the
point at which the bias-variance trade off is optimal. Operating at this point leads to a much
smaller dependence of the accuracy of the estimates on the sample size or, conversely, the
need for much smaller samples to achieve a given degree of accuracy.
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