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Abstract

The design of an effective architecture for content-based
retrieval from visual libraries requires careful considera-
tion of the interplay between feature selection, feature rep-
resentation, and similarity metric. We present a solution
where all the modules strive to optimize the same perfor-
mance criteria: the probability of retrieval error. This solu-
tion consists of a Bayesian retrieval criteria (shown to gen-
eralize the most prevalent similarity metrics in current use)
and an embedded mixture representation over a multireso-
lution feature space (shown to provide a good trade-off be-
tween retrieval accuracy, invariance, perceptual relevance
of similarity judgments, and complexity). The new represen-
tation extends standard models (histogram and Gaussian)
by providing simultaneous support for high-dimensional
features and multi-modal densities and performs well on
color, texture, and generic image databases.

1 Introduction

An architecture for image retrieval is composed by three
fundamental building blocks: a feature transformation, a
feature representation and a similarity metric. Even though
significant attention has been recently devoted to each of
these individual components, there have been significantly
less attempts to investigate the interrelationships between
them and how these relationships may affect the overall per-
formance of retrieval systems.

Current retrieval solutions can be grouped into two ma-
jor disjoint sets: the ones tailored for texture vs the ones
tailored for color. These two sets vary widely with respect
to the emphasis placed on the design of the individual re-
trieval components. Because most texture databases consist
of homogeneous images, texture retrieval usually assumes
Gaussian distributed features for which simple similarity
metrics, such as the Euclidean or Mahalanobis distances,
are optimal. The focus is, instead, on finding the feature
transformation that leads to best discrimination between the
different texture classes.

On the other hand, feature selection has not been a crit-

ical issue for color-based retrieval, where the features are
usually the pixel colors themselves. Instead a significant
amount of work has been devoted to the issue of feature
representation, where the majority of the proposed solutions
are variations on the color histogram initially proposed for
object recognition [9], e.g. color coherence vectors, color
correlograms, color moments, etc. The most common sim-
ilarity metrics are ��� norms and, among these, the ��� dis-
tance (histogram intersection [9]) has become quite popular.

While they have worked well in their specific domains,
these representations break down when applied to databases
of generic imagery. The main problem for texture-based so-
lutions is that, since generic images are not homogeneous,
their features cannot be accurately modeled as Gaussian and
simple similarity metrics are no longer sufficient. On the
other hand, color-based solutions are plagued by the expo-
nential complexity of the histogram on the dimension of the
feature space, and are applicable only to low-dimensional
features (e.g. pixel colors). Hence, they are unable to
capture the spatial dependencies that are crucial for texture
characterization.

In the absence of solutions that can account for both
color and texture, retrieval systems must resort to differ-
ent features, representations and similarity functions to deal
with the two image attributes [3], making it difficult to per-
form joint inferences with respect to both. The standard
solution is to evaluate similarity according to each of the
attributes and obtain an overall measure by weighting lin-
early the individual distances. This opens up the question
of how to weigh different representations on different fea-
ture spaces, a problem that has no easy solution.

In order to overcome these problems we present an in-
tegrated solution for image retrieval, where all three mod-
ules are designed with respect to the same performance
criteria: minimization of the probability of retrieval error.
This is shown to be interesting in two ways. First, it leads
to a Bayesian formulation of retrieval and a probabilistic
retrieval criteria that either generalizes or improves upon
the most commonly used similarity functions (Mahalanobis
distance, ��� norms,and Kullback-Leibler divergence). Sec-
ond, it shows that the most restrictive constraints on the
design of the retrieval architecture are actually imposed on
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feature selection. In fact, optimal performance can only be
achieved under a restricted set of invertible transformations
that leaves small space for feature optimization.

A corollary, of great practical relevance, of these two ob-
servations is that for retrieval from generic databases there
is less to be gained from feature selection than from a
carefully designed feature representation. In this context,
being expressive enough to capture the details of multi-
modal densities and compact enough to be tractable in high-
dimensions, the Gaussian mixture emerges as the right gen-
eralization, for joint modeling of color and texture, to the
standard histogram and Gaussian models.

Further observation that 1) a mixture model defines a
family of embedded densities, and 2) the linear invertible
feature transformation that provides optimal compaction
(principal component analysis) is well approximated by
(perceptually more justifiable) multiresolution transforma-
tions such as the DCT leads to the concept of embedded
multiresolution mixtures (EMM). These are a family of em-
bedded densities ranging over multiple image scales that al-
low explicit control over the trade-off between spatial sup-
port and invariance.

Overall the new retrieval architecture provides a good
trade-off between retrieval accuracy, invariance, perceptual
relevance of similarity judgments, and complexity. This
conclusion is supported by detailed experimental evaluation
showing that the new solution outperforms the previous best
for both objective (precision/recall) and subjective (percep-
tual) evaluations.

2 Probabilistic retrieval

The problem of retrieving images or video from a
database is naturally formulated as a problem of classifi-
cation. Given a representation (or feature) space � for the
entries in the database, the design of a retrieval system con-
sists of finding a map��� � � ���	��
������������ � �
from � to the set � of classes identified as useful for the
retrieval operation.

In this work, we define the goal of a content-based re-
trieval system to be the minimization of the probability of
retrieval error, i.e. the probability ��� � � �������� � that if
the user provides the retrieval system with a set of feature
vectors � drawn from class � the system will return images
from a class � � ��� different than � . Once the problem is for-
mulated in this way, it is well known that the optimal map
is the Bayes classifier [1]� � � ��� � !#"%$'&�!)(* ���+���-,/. ��� (1)� !#"%$'&�!)(* ��� � . �0�1, � ���+���-, � � (2)

where ��� � . ���2, � is the likelihood function, or feature rep-
resentation, of the features from the ,4365 class and ���+�7��, �
the prior probability for this class. When all classes are a
priori equally likely this leads to the standard maximum-
likelihood (ML) classifier� � ��� ��!#"%$'&�!)(* ��� � . �0�1, � (3)

or, if instead of a single feature vector � we have a collec-
tion of 8 independent query features, 9:�	� � � ����/� �<; �

� �69 � ��!#"%$=&�!)(* 
8
;>?�@ �

ACB $D��� � ? . �0�1, �  (4)

Some of the most popular retrieval criteria in current use
are special cases of this probabilistic formulation. For ex-
ample, when 8 is large, the simple application of the law
of large numbers reveals that� �E9 � � !F"�$G&0!#(*IHKJLNM AOB $D��� � . ���-, �QP

� !F"�$G&0!#(*SR ��� � . T � AOB $D��� � . ���2, �4U�V (5)

� !F"�$G&XWCY*:R ��� � . T � AOB $D��� � . T �4U�V
Z R ��� � . T � AOB $G��� � . ���-, �4U�V

� !F"�$G&XWCY* � �[�E\�.C. � * �
where ��� � . T � is the density of the query features, and� �[�E\�.C. � * � the Kullback-Leibler divergence between this
density and that associated with the ,4365 database image
class [1]. I.e. the KL divergence is the asymptotic limit
of the ML criteria. While the two criteria perform equally
well for global queries based on entire images, ML has the
added advantage of also enabling local queries consisting
of much smaller user-selected image regions.

When all the likelihoods are assumed Gaussian, equa-
tion (5) reduces to� �E9 � ��!#"%$=&0WOY* ACB $]. ^ * . _[`ba)ced/f M ^�g �*ih^ L P _X� h� Zkj * �4l ^�g �* � h� Zkj * �ml

(6)
where h� and h^ L are the sample mean and covariance of9 and j * and ^ * the mean and covariance of ��� � . �n�, � [10]. The third term in this equation is the widely used
Mahalanobis distance and the two other terms can be shown
to augment this distance, enabling it to detect changes in
scale and orientation of the query density. This can lead to
significant improvements in retrieval accuracy [10, 11].

Finally, because the probability of error of (4) tends to
the probability of error of the Bayes classifier orders of
magnitude faster than the associated density estimates tend
to the right distributions [1], the ML criteria places much
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a) b) c)

Figure 1. a) four image classes, b) Gaussian fits, c) histogram
fits.

less stringent requirements on the quality of these estimates
than criteria based on the minimization of � � distances,
such as the histogram intersection widely used for color re-
trieval. Since density estimation is a difficult problem this
can lead to significant improvements also with respect to
this class of techniques [11].

3 Trading Bayes error for complexity

In addition to the ML retrieval criteria, the goal of mini-
mizing retrieval error also provides guidance for feature se-
lection. In particular, one would like to get as close as pos-
sible to the least possible error achievable with the Bayes
classifier of (2), the Bayes error [1]

� � � 
 Z H L M &�!)(* ���+�0�1,/. ���bP 
Whenever a feature transformation

� ����� � ��� is em-
ployed the Bayes error becomes ��� , where


 Z � � � H l
	 L�� M &�!#(* ���+���2,/. � � �����QP �� H l
	 L�� M &�!#(* H L� l
	 L�� M ���+�0�2,/. ��� . � � ���m�bP �
� H L M &�!#(* ���+���2,/. ���QP � 
 Z � � 

I.e., the choice of feature space has a direct impact on
this optimal performance bound: 1) any feature transforma-
tion can only increase or, at best, maintain the Bayes error
achievable in the original space of image pixels, and 2) the
only transformations which maintain the Bayes error are the
invertible ones. This indicates that feature sets which arbi-
trarily discard information are a bad idea.

Because discarding information reduces complexity and
increases invariance to image transformations, the inter-
esting question is then how to discard dimensions in a
way that compromises as little as possible the achiev-
able Bayes error. We rely on the strategy of discard-
ing those features whose deletion leads to a transforma-
tion that is as close to invertible as possible. If ������� ,� ��� � � � � is an invertible transformation and � * �

Figure 2. Two visually distinct images that have the exact same
color histogram.

��� � ��� the map �K� V � ������ V * g � � V * � V *�� � ������ V � � �� V � ������ V * g � ��� � V *�� � ����/� V � � we successively look for
� ��!#"%$=&XWCY*��! H M .C. � g � �"� * � � � ���m��� Z � .O. P

where # is the set of feature indices. When
�

is restricted
to be a linear transformation, the optimal solution is pro-
vided by the well known PCA dimensionality reduction
technique. It is also well known that, for local image neigh-
borhoods, PCA is well approximated by frequency decom-
positions, such as the DCT, that are simpler to compute and
better matched to human perception. This makes the space
of DCT coefficients a natural feature space for CBIR from
the Bayes error, perceptual, and complexity points of view.

4 Feature representation

Maintaining the Bayes error small is, in practice, not suf-
ficient to guarantee good retrieval accuracy, since the degree
to which this lower bound can be attained is a function of
quality of the estimates of ��� � ? . �1� , � in (4). Unfortu-
nately, there are serious limitations associated with the fea-
ture representations in common use in the retrieval litera-
ture. These are illustrated in Figure 1 where we depict an
hypothetical two-dimensional retrieval problem with four
image classes. The class densities are represented in fig-
ure a) by the contour where the probability drops to, say,$ �&% of its maximum value. The best Gaussian fit to each of
the class densities under the Gaussian model, implicit in the
use of the Mahalanobis distance, is shown in b). Because
the Gaussian model is too simplistic to capture the details
of the true densities there is a lot of class-overlap and the
classification error is high.

As illustrated by Figure c) a significantly better approx-
imation can be achieved with the histogram model, widely
used for color retrieval. However, this comes at a price: an
exponential dependence of the model complexity (number
of histogram bins) in the dimension of the feature space,
that prohibits the use of histograms in high dimensional
spaces. The ability to cope with high-dimensional features
is a requirement when one wants to deal with spatially sup-
ported features that can capture spatial image dependencies.
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Figure 3. a) an image from the Corel database, b) its histogram, c) projection of the corresponding ��� dimensional embedded multiresolution
mixture onto the DC subspace, and d) projection onto the subspace of two lower frequency coefficients (contours where likelihood drops to ����� ).

Such dependencies are an essential component of image
properties like texture or local surface appearance and, as
shown in Figure 2, crucial for fine image discrimination.

An alternative feature representation is the Gaussian
mixture model

��� � . �0�1, � � �>
� @ � 	 *�
 � � � j � ��^ � � � (7)

where 
 � � � j � ��^ � � is a Gassian of mean j and covariance^ . Gaussian mixtures are 1) able to approximate arbitrary
densities and 2) computationally tractable on high dimen-
sions (complexity only quadratic in the dimension of the
feature space).

5 Embedded multiresolution mixtures

The simple adoption of a mixture model on a high di-
mensional space does not automatically solve all the repre-
sentation problems. In particular, it is well know that, as the
region of support of the features increases it is also increas-
ingly more difficult to make the representation invariant to
image transformations. There are several ways in which
invariance can be achieved: filtering out high-frequency in-
formation [7] encoding invariance into the similarity func-
tion [8], or simply including examples covering all types of
variation in the training set [6].

From the Bayes error point of view, the two latter solu-
tions are preferable because they imply discarding no infor-
mation. Furthermore, since explicit modeling of all trans-
formations in the similarity function significantly increases
the retrieval complexity, learning is the best solution. Nev-
ertheless, due to its combinatorial complexity in the num-
ber of degrees of freedom to be accounted for, it is usually
impossible to rely on learning uniquely. In practice, it is
instead necessary to reach a balance between explicit en-
coding of invariance in the features and learning invariance
through training. This leads to the idea of EMM models.

The key observation is that the restriction of a Gaussian
in � � to � � ,  ���

is still a Gaussian. In particular, if� � � � and ��� ��� � 
 � � � j�� � ^ � � then

��� ��� . ��� �1����� � ��� � 
 ��� � � ��� � j�� ��� � ^ � � l � � (8)

where � � � M � ��� � g � P , � � ( � � g � ) is the identity (zero) ma-
trix of order  (

� Z  ) and the result follows from the fact
that the projection into � � is a linear transformation. Com-
bining equations (7) and (8) we obtain a similar result for
Gaussian mixtures

��� � . ���-, � . � � � �>
� @ � 	 � 
 ��� �

� ��� � j � ��� � ^ � � l � �  (9)

This implies that the set of parameters � 	 � � j � ��^ � � defines
a family of embedded densities � ��� � . �0�1, � . � � � � � @ � .When, as is the case of the DCT features, the underly-
ing feature space results from a multiresolution decomposi-
tion this leads to an interesting interpretation of the mixture
density as a family of densities defined over multiple im-
age scales, each adding higher resolution information to the
characterization provided by those before it. Disregarding
dimensions associated with high frequency basis functions
is therefore equivalent to modeling densities of low-pass fil-
tered images. In the extreme case where only the first, or
DC, coefficient is considered the representation is equiva-
lent to the histogram. This is illustrated in Figure 3.

The EMM model can thus be seen as a generalization of
the color histogram, where the additional dimensions cap-
ture the spatial dependencies that are crucial for fine image
discrimination (as illustrated in Figure 2). This generaliza-
tion also enables fine control over the invariance properties
of the representation. Since the histogram is approximately
invariant to scaling, rotation and translation, when only the
DC subspace is considered the representation is invariant to
these transformations. As high-frequency coefficients are
included invariance is gradually sacrificed. Of course, in-
variance can always be improved by including proper ex-
amples in the training sample.
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Figure 4. Precision/recall curves on a) Brodatz and b) Columbia. For comparison, curves obtained with MRSAR/ML and HI are also shown. �
QV means that only � feature vectors were included in the query. c) surface spanned by precision/recall as a function of the number of subspaces
considered, for Brodatz. d) Precision/recall as a function of block spacing ( � ) during learning when � � and ��� subspaces are considered.

6 Experimental evaluation

To compare the performance of probabilistic retrieval
with that of standard solutions, we conducted experiments
on two different databases: the Brodatz texture database,
and the Columbia object database. While Brodatz pro-
vides a good testing ground for texture retrieval, color-based
methods tend to do well on Columbia.

The 
 �!��� images in the Brodatz database were divided
into two subgroups: a query database of 
�
�� , and a retrieval
database of ���	� images. The retrieval performance of the
combination of the MRSAR features and Mahalanobis dis-
tance (MD) (following the implementation in [5]) was used
as a benchmark for this database. The Columbia database
was also split into two subsets: a query database contain-
ing a single view of each of the 
 � � objects available, and a
retrieval database containing � views (separated by 
 ��� ) of
each object. Histogram intersection (HI) [9] was used as a
benchmark on Columbia.

All images were converted from the original RGB to the
YBR color space. Unless otherwise noted, DCT features
were obtained with an ���� window sliding by increments
of two pixels. Mixtures of � Gaussians were used for the
Brodatz and Corel databases and 
�� for Columbia. Only
the first 
�� embedded subspaces (DCT coefficients) were
considered for retrieval. Each image in the database was
considered as an independent class.

6.1 Embedded mixtures

Figures 4 a) and b) present precision/recall curves of
ML retrieval with EMM for the Brodatz and Columbia
databases against those of MRSAR/ML (Brodatz) and HI
(Columbia). Because ML can be used both as a measure
of local or global similarity, we performed a series of ex-
periments where the query consisted of only a few of the
feature vectors available in the query image. From a to-
tal of � $ � non-overlapping blocks, the number used in each

experiment varied between 1 ( �  � % of the image) and � $ �
( 
 �!�&% )1. Blocks were selected starting from the center in
an outward spiral fashion.

Two conclusions can be drawn from the figure. First,
when used as a global similarity metric (a significant por-
tion of the feature vectors in the query image selected) the
EMM/ML combination achieves equivalent performance or
actually outperforms the retrieval approaches that are spe-
cific for the domain of each database (MRSAR/ML on Bro-
datz and HI on Columbia). This shows that EMM/ML can
handle both color and texture indicating that the represen-
tation should do well across a large spectrum of databases.
Second, a small subset of the query feature vectors is suffi-
cient to achieve retrieval performance close to the best. In
both cases �	
 query vectors, �  
 % of the total of features
that could be extracted from the image and covering only
� $ % of its area, are enough. In summary, ML has good
properties both as a local and a global metric of similarity
and is very robust against missing data.

From a perceptual standpoint, the results achieved with
EMM/ML are also superior to those obtained with the
MRSAR and histogram-based approaches. In particular,
EMM/ML has three major advantages: 1) when it commits
errors, these errors tend to be perceptually less annoying
than those originated by the other approaches, 2) when there
are several visually similar classes in the database, images
from these classes tend to be retrieved together, and 3) even
when the performance in terms of precision/recall is worse
than that of the other approaches, the results are frequently
better form a perceptual point of view. Figure 5 gives ex-
amples of each of these types of situations.

1Notice that even ����� vectors are a very small percentage ( ��� ��� ) of
the total number of blocks that could be extracted from the query image if
overlapping blocks were allowed.
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Figure 5. Comparison of EMM/ML retrieval results (top row) with those of HI on Columbia and MRSAR/MD on Brodatz (bottom row).

6.2 Invariance

As discussed in section 5, EMMs provide two ways to
encode invariance into the retrieval operation: learning and
low-pass filtering (discarding high frequency subspaces).

Figures 4 c) and d) present 1) the surface spanned by
precision/recall as a function of the number of subspaces
considered during retrieval, and 2) the impact on preci-
sion/recall of the spacing between adjacent features vectors
taken into account during learning. The shape of the pre-
cision/recall surface illustrates the trade-off between invari-
ance and spatial support. When too few subspaces are con-
sidered, there is not enough support to capture the correla-
tions of each texture class. Performance therefore increases
as the number of subspaces grows, starting to degrade again
when we get to the region of high frequencies. At this point,
because the representation is very detailed, good recogni-
tion requires precise alignment between the query and the
database features. Overall, there is a large set of subspaces
for which a good trade-off between spatial support and in-
variance is achieved and precise selection of the number of
subspaces is, in practice, not crucial for good performance.

Plot d) shows how retrieval accuracy can be improved
by increasing the variability of the examples in the train-
ing set. When image blocks are non-overlapping the rep-
resentation is invariant only to translations by multiples of
the block size. As the inter-sample spacing decreases, the
representation becomes invariant to smaller displacements
and retrieval accuracy increases. This was expected, since
invariance is a bigger problem when high frequencies are
included. Similar results were obtained with Columbia.
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