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ABSTRACT

We study solutions to the problem of feature representation
in the context of content-based image retrieval (CBIR). Re-
trieval is formulated as a classification problem, where the
goal is to minimize probability of retrieval error. Under this
formulation, retrieval performance is directly related to the
quality of density estimation which is, in turn, determined
by properties of the feature representation. We show that
most representations of interest for the retrieval problem are
particular cases of the mixture model, and present detailed
arguments for why this is the most appropriate representa-
tion for retrieval.

1. INTRODUCTION

An architecture for image retrieval is composed by three
fundamental building blocks: a feature transformation, a
feature representation and a similarity function. We have
recently introduced a formulation of retrieval as a classifica-
tion problem, where the goal is to minimize the probability
of retrieval error, and shown that most of the current similar-
ity functions are particular cases of this formulation [9, 8].
Under this formulation, retrieval performance is deter-
mined to a significant extent by the quality of density es-
timates which, in turn, are strongly impacted by the se-
lection of feature representation. We show that most rep-
resentations of interest for the retrieval problem, includ-
ing parametric and non-parametric densities, vector quan-
tization and histograms, are particular cases of the mixture
model. We then argue that the mixture representation is the
most appropriate for image retrieval, and present retrieval
results on a database of generic imagery where it is shown
to outperform color histograms, color correlograms, and the
standard representations for texture-based retrieval.

2. PROBABILISTIC RETRIEVAL

The problem of retrieving images or video from a database
is naturally formulated as a problem of classification. Given
a representation (or feature) space F for the entries in the
database, the design of a retrieval system consists of finding
amap

g: F - M={,...,K}
X = v

from F to the set M of classes identified as useful for the
retrieval operation.

We set the goal of a content-based retrieval system to
be the minimization of the probability of retrieval error, i.e.
the probability P(g(x) # y) that if the user provides the
retrieval system with a set of feature vectors x drawn from
class y the system will return images from a class g(x) dif-
ferent than y. Once the problem is formulated in this way,
it is well known that the optimal map is the Bayes classi-
fier [1]
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where P(x|y = 1) is the likelihood function for the i** class

and P(y = 4) its prior probability. The smallest achievable
probability of error is the Bayes error

L* =1 - Ex[max P(y = i[x)], ©)

and the difference between the actual error an this optimal
bound is a function of the quality of density estimates [1]

Pg(x) #y) - L* < (4)
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where p(x|y = ) and p(y = ©) are the estimates for P(x|y =
i) and P(y = 7). Itis therefore clear that good density esti-
mation is a sufficient condition for accurate retrieval.

3. FEATURE REPRESENTATIONS

Among the different components of a retrieval system, the
model (or feature representation) on which density estimates
are based has the strongest impact on their accuracy. In this
section we analyze the relationships between several feature
representations of interest for image retrieval.



3.1. Mixturemodels
A mixture density has the form

C

P(x) =) P(x|w;) P(w;), ()

i=1

where C'is a number of classes, {P(x|w;)}$_; a sequence
of class-conditional densities, and {P(w;)}$_; a sequence
of class probabilities. Mixture densities model processes
with hidden structure: one among the C' classes is first se-
lected according to the { P(w;)}, and the observed data is
then drawn according to the respective class-conditional den-
sity. Class-conditional densities can be any valid probability
density functions, i.e. any set of non-negative functions in-
tegrating to one. In this paper we consider the subset of mix-
ture models where class-conditional densities are a function
of two parameters: scale and location.

3.2. Parametric densities

It is obvious from (5) that any parametric density can be
seen as a particular case of a mixture model, by simply mak-
ing C = 1. In particular, for a Gaussian of mean x and
covariance X
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3.3. Non-parametric densities

It is also clear from (5) that given a sample of observa-
tions X = {x1,...,x}, by making the number of image
classes equal to the number of observations M, assuming
each class to be equally likely, and class conditional densi-
ties to be replicas of the same kernel K (x) centered on the
observations

1 M
P(x) = 7 > Ke(x - x;) (8)

i=1

we obtain what are usually called, Parzen or kernel den-
sity estimates [6]. These models are traditionally referred
to as non-parametric densities, even though they usually re-
quire the specification of a scale (or bandwidth) parameter
3. One popular choice for the kernel K (x) is the Gaussian
distribution, in which case X is a covariance matrix.

3.4. Vector quantization

In order to relate mixtures with vector quantization, we start
by noticing that associated with any mixture model there is

a soft partition of the sample space. In particular, given an
observation x, it is possible to assign that observation to
each of the data classes according to
P(x|w;) P(w;
2kt P(x|wr) P(wr)
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Making all the covariances tend to zero, 3; = lim._,g €I, Vi

Plwilx) =

P(x|w;) = 6(x — i), (11)

where §(x) is the Dirac delta function [5]. Therefore,

C
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Since the set {x : ||x — pr|| = ||x— u;||} has measure zero,

for all practical purposes (13) can be approximated by

1, if ||x — || < ||x — pxl||VE < i
Plwilx) = { 0, otrltlerwise =l :

(14)
and some tie-breaking rule used to assign points that lie on
the boundaries between different cells.

Equations (11) and (14) are a generative model for a
vector quantizer [2]. The space is first partitioned into a
collection of Voronoi cells according to (14), an operation
usually referred to as encoding in the VVQ literature. Each
observed sample x is then assigned to the cell in which it
falls and the cell’s label transmitted to a decoder. Given a
cell label, the decoder simply draws a sample from the con-
ditional density associated with the cell, according to (11).
Since this density is the delta function this simply consists
of outputting the centroid or mean of the cell. It is, there-
fore, clear that a VQ is a particular case of the Gaussian
mixture model.



3.5. Histograms

Equations (12) and (14) also provide an interpretation of
a VQ as an histogram since, in practice, the vector H =
{P(w1), ... P(wc)} is estimated with normalized counts of
the number of samples that land on each of the quantization
bins. Since any histogram can be expressed in this form,
it is clear that histograms are also a particular case of the
mixture model. A special case of interest occurs when the
reproducing vectors p; are located on a rectangular grid of

size hq, - .., hy,. Inthis case, the Voronoi cells become rect-
angles
H h hn
P(w.lx) — ]" if |X1'—,U/z',1| S 717"'7|Xn_,u’i,n| S 2
! 0, otherwise,

and we obtain the standard histogram model that is com-
monly used for color-based image retrieval [7].

4. ACRITICAL ANALYSIS

Since most of the current feature representations are partic-
ular cases of the mixture model, it is natural to expect that
they will lead to suboptimal performance when applied to
the retrieval problem. In this section, we give more con-
crete arguments for why this is indeed the case.

We start by noticing that because they have as many pa-
rameters as the number of observations (image features in
the case of image retrieval), the so called non-parametric
models are not a compact representation for the underly-
ing density. Consequently, the evaluation of equation (8) is
computationally expensive (complexity proportional to the
number of training features). On the other hand there is no
guarantee that the density estimates will be better than those
provided by the mixture model, and there is usually no easy
way to set the bandwidth parameter [6]. It is, therefore not
clear that relying on a non-parametric model will justify the
increase in retrieval complexity.

While non-parametric models have too many degrees of
freedom, parametric ones have to few. Typically, retrieval is
performed on databases of non-homogeneous images, com-
posed by multiple visual stimulae, and the associated densi-
ties are only rarely unimodal. Consider the simple example
of the image in Figure 1 a). Its intensity histogram, shown
in b), has two main peaks: one for the black background
and another for the white letters in the foreground. The fact
that most parametric densities are unimodal makes it clear
that, in general, they do not have enough expressive power
to capture the details of the densities associated with real
images such as this one. In particular, Figure 1 c) illustrates
how bad a Gaussian fit can be.

While overcoming this lack of expressive power, stan-
dard color histograms also suffer from significant limita-
tions. Because their complexity (number of cells) grows

exponentially with the dimension of the feature space they
are only practical in low dimensions, such as the 3D space
of image colors. Consequently they have no ability to sup-
port the features with large spatial support that are required
to model spatial image dependencies. Hence, they can only
provide a very coarse image characterization that is insuf-
ficient for fine image discrimination. This is illustrated by
Figure 1 d), where we present an image that has the ex-
act same histogram as the one in a) but which is visually
very different from it. Because this limitation is inherent
to the fixed partition of the space associated with the stan-
dard histogram, most attempts to extend its spatial support,
e.g. color coherence vectors and correlograms [3], are also
plagued by the exponential dependence of complexity on
the dimensionality of the space.

On the other hand, by adapting the partition of the space
to the characteristics of the data, VQ achieves equivalent
performance to the standard histogram with much lower
complexity. This is not surprising since, as seen above, a
VQ is a generic form of histogram. Still, the fact that VQ-
based estimates rely on a hard partition of the space restricts
their usefulness since slight feature perturbations may lead
to drastic changes in quantization, label histograms and con-
sequently image similarity. This effect is illustrated in Fig-
ure 2.
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Fig. 2. a) Partition of the feature space by a 3-cell VQ, a set of feature
vectors and the corresponding label histogram. b) Small perturbations of
the feature vectors can lead to entirely different label histograms.

Because, as discussed above, mixture models perform
a soft partition of the feature space, they are not subject to
these problems. Furthermore, by allowing arbitrary covari-
ances for each of the data classes, Gaussian mixtures pro-
vide a much better approximation to the true density than
the train of delta functions associated with VQ. One can
therefore conclude that there is no strong justification for re-
lying on any of the above feature representations instead of
the Gaussian mixture. In the following section we validate
these theoretical arguments with experimental evidence.

5. EXPERIMENTAL RESULTS

In order to compare the performance achievable with differ-
ent representations we conducted experiments on a database
containing 15 image classes from Corel in a total of 1, 500
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Fig. 1. a) and d) two images with the color histogram shown in b). c) best Gaussian fit.

images. Four representations were tested: Gaussian, color
histograms, Gaussian mixture, and color correlograms. The
various representations are usually employed for different
tasks. The Gaussian is implicit in the Mahalanobisdistance
(MD) traditionally used for texture-based retrieval while his-
tograms are mostly used for color-based retrieval. Correlo-
grams aim to capture both color and texture.

The Gaussian mixture model was applied to the space of
coefficients of a block-wise 8 x 8 DCT transform. Since the
low-dimensional projection of a Gaussian mixture is still a
Gaussian mixture, the resulting density can be seen as an
extension of the color histogram [8, 10]. When only the
first coefficient is considered for retrieval, the two represen-
tations are identical. Including more coefficients extends
the spatial support of the representation and should improve
performance. The parameters of the two models were set
so that they had equivalent retrieval complexity. Because
the application of the MD to the DCT features lead to very
poor performance we combined instead the Gaussian rep-
resentation with a feature transformation that is more tuned
for texture characterization; the MRSAR features [4]. This
combination has been used in several retrieval systems. For
correlograms we followed [3], once again picking the pa-
rameters that led to complexity equivalent to that of the
Gaussian mixture. Figure 3 presents precision/recall curves
for the various approaches, showing that the Gaussian mix-
ture representation clearly outperforms the others.
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Fig. 3. Precision/recall on Corel.
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