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Abstract

We study solutions to the problem of evaluating image
similarity in the context of content-based image retrieval
(CBIR). Retrieval is formulated as a classification prob-
lem, where the goal is to minimize probability of retrieval
error. It is shown that this formulation establishes a com-
mon ground for comparing similarity functions, exposes as-
sumptions hidden behind most of the ones in common use,
enables a critical analysis of their relative merits, and de-
termines the retrieval scenarios for which each may be most
suited. We conclude that most of the current similarity func-
tions are sub-optimal special cases of the Bayesian criteria
that results from explicit minimization of error probability.

1 Introduction

An architecture for image retrieval is composed by three
fundamental building blocks: a feature transformation, a
feature representation and a similarity function. In this
paper, we study good similarity criteria. Given the long
history of similarity evaluation in fields such as texture or
object recognition, it is not surprising that many similar-
ity functions have been proposed for the retrieval problem.
However, there seems to be no clear understanding of their
inter-relationships or relative weaknesses and strengths. In
practice, similarity functions are frequently selected with-
out any justification or consideration for the underlying as-
sumptions. For example, while the Gaussian assumption
underlying quadratic metrics such as the Mahalanobis dis-
tance (MD) is acceptable for the homogeneous images that
compose most texture databases, it is inappropriate when
dealing with generic imagery. Yet, the Mahalanobis dis-
tance is frequently used for generic image retrieval [4, 7].

In this paper, we formulate retrieval as a classification
problem, where the goal is to minimize the probability of
retrieval error. This is a generic criteria, sensible inde-
pendently of the particular type of images that populate a
database. By making explicit the assumptions behind sev-
eral similarity functions in current use, the new formula-

tion enables a critical analysis of their relative merits. We
point out that the explicit minimization of probability of er-
ror leads to a Bayesian retrieval criteria, and show that most
of the current similarity functions are sub-optimal special
cases of it. These theoretical findings are confirmed exper-
imentally for texture and color-based retrieval, where the
Bayesian criteria is shown to outperform the most popular
solutions for these tasks: MD and histogram intersection
(HI) [10].

2 Probabilistic retrieval

The problem of retrieving images or video from a
database is naturally formulated as a problem of classifi-
cation. Given a representation (or feature) space 	 for the
entries in the database, the design of a retrieval system con-
sists of finding a map


�� 	������� ���������������
from 	 to the set � of classes identified as useful for the
retrieval operation.

In this work, we define the goal of a content-based re-
trieval system to be the minimization of the probability of
retrieval error, i.e. the probability �! 
  �"$#&%�(')# that if
the user provides the retrieval system with a set of feature
vectors " drawn from class ' the system will return images
from a class 
  *"$# different than ' . Once the problem is for-
mulated in this way, it is well known that the optimal map
is the Bayes classifier [5]
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where �! �"-7 '!�&9;# is the likelihood function for the 9 ��� class
and �! *'��?9;# its prior probability. The smallest achievable
probability of error is the Bayes error [5]
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We next demonstrate that most of the similarity functions
in current use for image retrieval are special cases of the
Bayesian criteria.



3 Unifying similarity evaluation

The relations between various similarity functions are il-
lustrated in Figure 1. If an upper bound on the Bayes error
of a collection of two-way classification problems is min-
imized instead of the probability of error of the original
problem, the Bayesian criteria reduces to the Bhattacharyya
distance (BD). On the other hand, if the original criteria is
minimized, but the different image classes are assumed to
be equally likely a priori, we have the maximum likelihood
(ML) retrieval criteria. As the number of query points grows
to infinity the ML criteria tends to the Kullback-Leibler di-
vergence (KLD), which in turn can be approximated by
the ��� test by performing a simple

���>�
order Taylor se-

ries expansion. Alternatively, the KLD can be simplified
by assuming that the underlying probability densities be-
long to a pre-defined family. In the Gaussian case, further
assumption of orthonormal covariance matrices leads to the
quadratic distance (QD) frequently found in the compres-
sion literature. The next possible simplification is to assume
that all classes share the same covariance matrix, leading to
the Mahalanobis distance (MD). Finally, assuming identity
covariances results in the Euclidean distance (ED). We next
derive in greater detail all these relationships.

Bayes

2χ

iΣ = I

qΣ = Σ i

Gaussian
Σ orthonormal

KLD

Quadratic

Mahalanobis

Bhattacharyya ML

Euclidean

Linearization

2-way bound

Large N

Equal priors

Figure 1. Relations between different similarity functions.

3.1 Bhattacharyya distance

If there are only two classes in the classification prob-
lem, (2) can be written as [5]@ + � CBEGF 2����  ��! �'<�
	 7 "$# � �! �'<� � 7 "$#JI
�
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where we have used the bound 2���� F � ��� I ��� ���
. The last

integral is usually known as the Bhattacharyya distance be-
tween �! *"-7 '8��	 # and �! *"-7 '8� � # and has been proposed
(e.g. [8, 2]) for image retrieval, where it takes the form
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and �! �"-7 �5# is the density of the query. The resulting clas-
sifier can thus be seen as the one which finds the lowest
upper-bound on the Bayes error for the collection of two-
class problems involving the query and each of the database
classes.

3.2 Maximum likelihood

It is straightforward to see that when all image classes
are a priori equally likely, �! �'!� 9;#-� � �H�

, (1) reduces to
the ML classifier
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Under the assumption that the query consists of a collection
of ! independent query features " � ��"#" ��������� "%$ � , this
equation can also be written as
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3.3 Kullback-Leibler divergence

When the number of query features ! is large, simple
application of the law of large numbers to (5) reveals that
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where

� @  5387 7 � 6 # the Kullback-Leibler divergence be-
tween the query density and that associated with the 9 ���
database image class [3]. Thus, the KLD is simply the
asymptotic limit of the ML criteria.

3.4 ��� statistic

Using the first order Taylor series approximation for the
log about � � �

, *�, 0  6� #87
� A � , we obtain
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and, in particular,
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The integral on the right is known as the � � statistic and has
been proposed as a metric for image similarity in [9, 1]. It
is clear that it simply approximates the KLD and, therefore,
the ML classifier in the asymptotic limit of a large query.

3.5 Quadratic distance

When the image features are Gaussian distributed
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(5) becomes
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where "$ 6 � "$&% 
  *" 
 A(' 6 #*)+� � "6  *" 
 A(' 6 # is the
quadratic distance commonly found in the compression lit-
erature. Thus, as a retrieval metric, the QD can be seen
as the result of imposing two stringent restrictions on the
ML criteria. First, that all image sources are Gaussian
and, second, that their covariance matrices are orthonormal
( 7 � 6 7�� ����, 9;# .
3.6 Mahalanobis distance

Because
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where
.� E is the sample covariance of " 
 and ; 6 �  ." A' 6 #�)?� � "6  ." A5' 6 # the MD, this metric results from com-

plementing Gaussianity with the assumption that all classes

have the same covariance ( � E �@� 6 �@� ��, 9 ). Finally, if
this covariance is the identity ( � �BA ), we obtain the square
of the Euclidean Distance C 6 �  ." A1' 6 #�)  ." A-' 6 # .
4 A critical analysis

Exposing the assumptions behind each similarity func-
tion enables a critical analysis of their usefulness and the de-
termination of the retrieval scenarios for which they may be
most appropriate. While the choice between the Bayesian
and ML criterion is a function only of the amount of prior
knowledge about class probabilities, there is in general no
strong justification to rely on any of the remaining metrics.

For example, while ML and KLD perform equally well
for global queries based on entire images, ML has the added
advantage of also enabling local queries consisting of user-
selected image regions. These queries are important be-
cause they allow users to express exactly what interests
them within a retrieval image and, therefore, are consid-
erably less ambiguous than global queries. The only ad-
vantage of the KLD is a smaller computational complex-
ity, whenever global queries are enough and it has a closed-
form expression. This is also true for the � � statistic which,
unlike the KLD, is not guaranteed to equal the performance
of ML even for large queries. Finally, relying on the Bhat-
tacharyya distance seems even less sensible. There is small
justification to replace the minimization of the error prob-
ability on the multi-class retrieval problem (ML) by the
search for the two class problem with the smallest error
bound (BD).

The remaining retrieval criteria (QD, MD, and ED) only
make sense if the image features are Gaussian distributed
for all classes. While this is approximately true in certain
cases (e.g. texture databases where each image is an homo-
geneous patch of a given texture) it certainly does not hold
for generic databases. Even when the Gaussian approxima-
tion holds, there seems to be little justification to rely on
any criteria other than ML, as all other are approximations
that arbitrarily discard covariance information. This infor-
mation is usually important for the detection of subtle vari-
ations such as rotation and scaling in feature space. This is
illustrated by Figure 2. In a) and b) we show the distance,
under both QD and MD between a Gaussian and a replica
rotated by D>E F 	 � � I . Plot b) clearly illustrates that while
the MD has no ability to distinguish between the rotated
Gaussians, the inclusion of the 4�6 �87  F � � "6 .� E I term leads
to a much more intuitive measure of similarity: minimum
when both Gaussians are aligned and maximum when they
are rotated by F�	=G .

As illustrated by c) and d), further inclusion of the term

*�, 0 7 � 6 7 (full ML retrieval) penalizes mismatches in scal-
ing. In plot c) we show two Gaussians, with covariances� E �HA and � 6 �JI �KA , centered on zero. In this ex-
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Figure 2. a) a Gaussian with mean ���������	� and covariance 
��������������� ����� and its replica rotated by � . b): Distance between the Gaussian and its
rotated replicas as a function of ����� under both the QD and the MD. c) two Gaussians with different scales. d) Distance between them as a function
of ���� "!$# under ML, QD, and MD.

ample, MD is always zero, while 4�6 �87  F � � "6 .� E I&% � � I �
penalizes small I and *�, 0 7 � 6 7'% *�, 0�I � penalizes largeI . The total distance is shown as a function of *�, 0�I � in
plot d) where, once again, we observe an intuitive behav-
ior: the penalty is minimal when both Gaussians have the
same scale ( *�, 0�I � ��	 ), increasing monotonically with the
amount of scale mismatch. Notice that if the *�, 0 7 � 6 7 term
is not included, large changes in scale may not be penalized
at all.

5 Experimental results

Figure 3, presents precision/recall curves for texture and
color-based retrieval experiments on (respectively) the Bro-
datz (texture) and Columbia (object) databases. Two curves
are presented for each database, one relative to ML and an-
other relative to the similarity function commonly used for
the associated task: MD for texture and HI for color. On
Brodatz, texture features are the coefficients of the least
squares fit to the MRSAR model [6]. On Columbia, we
use color histograms of

� � � bins on YUV space. To make
comparisons fair, on Brodatz ML is based on the Gaussian
assumption of (8).

The figure confirms that there is a clear improvement in
switching from MD or HI to ML retrieval. For Brodatz the
gain is approximately uniform and always between

� A � 	$( .
On Columbia, both metrics perform equally well for low
recall, but ML has substantially higher precision (up to

� � (
better) for high recall.
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