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Abstract. Independent representations have recently attracted signifi-
cant attention from the biological vision and cognitive science commu-
nities. It has been 1) argued that properties such as sparseness and in-
dependence play a major role in visual perception, and 2) shown that
imposing such properties on visual representations originates receptive
fields similar to those found in human vision. We present a study of the
impact of feature independence in the performance of visual recognition
architectures. The contributions of this study are of both theoretical
and empirical natures, and support two main conclusions. The first is
that the intrinsic complexity of the recognition problem (Bayes error) is
higher for independent representations. The increase can be significant,
close to 10% in the databases we considered. The second is that criteria
commonly used in independent component analysis are not sufficient to
eliminate all the dependencies that impact recognition. In fact, “indepen-
dent components” can be less independent than previous representations,
such as principal components or wavelet bases.

1 Introduction

After decades of work in the area of visual recognition (in the multiple guises
of object recognition, texture classification, and image retrieval, among others)
there are still several fundamental questions on the subject which, by large,
remain unanswered. One of the core components of any recognition architecture
is the feature transformation, a mapping from the space of image pixels to a
feature space with better properties for recognition. While numerous features
have been proposed over the years for various recognition tasks, there has been
small progress towards either 1) a universally good feature set, or 2) a universal
and computationally efficient algorithm for the design of optimal features for
any particular task.

In the absence of indisputable universal guidelines for feature design, one
good source of inspiration has always been the human visual system. Ever since
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the work of Hubel and Wiesel [9], it has been established that 1) visual process-
ing is local, and 2) different groups in primary visual cortex (i.e. area V1) are
tuned for detecting different types of stimulus (e.g. bars, edges, and so on). This
indicates that, at the lowest level, the architecture of the human visual system
can be well approximated by a multi-resolution representation localized in space
and frequency, and several “biologically plausible” models of early vision are
based on this principle [2,3,8,13,18,19]. All these models share a basic common
structure consisting of three layers: a space/space-frequency decomposition at
the bottom, a middle stage introducing a non-linearity, and a final stage pooling
the responses from several non-linear units. They therefore suggest the adoption
of a mapping from pixel-based to space/space-frequency representations as a
suitable universal feature transformation for recognition.

A space/space-frequency representation is obtained by convolving the image
with a collection of elementary filters of reduced spatial support and tuned to
different spatial frequencies and orientations. Traditionally, the exact shape of
the filters was not considered very important, as long as they were localized in
both space and frequency, and several elementary filters have been proposed in
the literature, including differences of Gaussians [13], Gabor functions [16,8],
and differences of offset Gaussians [13], among others. More recently, this pre-
sumption has been challenged by various authors on the basis that the shape of
the filters determines fundamentally important properties of the representation,
such as sparseness [7,15] and independence [1].

These claims have been supported by (quite successful) showings that the
enforcement of sparseness or independence constraints on the design of the fea-
ture transformation leads to representations which exhibit remarkable similarity
to the receptive fields of cells found in V1 [1,15]. However, while the arguments
are appealing and the pictures compelling, there is, to the best of our knowledge,
no proof that sparseness or independence are, indeed, fundamental requirements
for visual recognition. On the contrary, not all evidence supports this conjecture.
For example, detailed statistical analysis of the coefficients of wavelet transforms
(an alternative class of sparse features which exhibit similar receptive fields) has
revealed the existence of clear inter-dependencies [17].

In what concerns the design of practical recognition systems, properties such
as sparseness or independence are important only insofar as they enable higher-
level goals such as computational efficiency or small probability of error. Under a
Bayesian view of perception [12], these two goals are, in fact, closely inter-related:
implementation of minimum probability of error (MPE) decisions requires ac-
curate density estimates, which are very difficult to obtain in high-dimensional
feature spaces. The advantage of an independent representation is to decouple
the various dimensions of the space, allowing high dimensional estimates to be
computed by the simple multiplication of scalars. In this sense, independence
can be a crucial enabler for accurate recognition with reduced complexity. On
the other hand, it is known that any feature transformation has the potential to
increase Bayes error, the ultimate lower-bound on the probability of error that
any recognition architecture can achieve, for a given feature space. It is not clear



that independent feature spaces are guaranteed to exhibit lower Bayes error than
non-independent ones. In fact, since the independence constraint restricts the set
of admissible transforms, it is natural to expect the opposite.

Due to all of this, while there seem to be good reasons for the use of inde-
pendent or sparse representations, it is not clear that they will lead to optimal
recognition. Furthermore, it is usually very difficult to determine, in practice, if
goals such as independence are actually achieved. In fact, because guaranteeing
independence is a terribly difficult endeavor in high-dimensions, independent
component analysis techniques typically resort to weaker goals, such as min-
imizing certain cumulants, or searching for non-Gaussian solutions. While an
independent representation will meet these weaker goals, the reverse does not
usually hold. In practice, it is in general quite difficult to evaluate by how much
the true goal of independence has been missed.

In this work we address two questions regarding the role of independence.
The first is fundamental in nature: “how important is independence for visual
recognition?”. The second is relevant for the design of recognition systems: “how
realistic is the expectation of actually enforcing independence constraints in real
recognition scenarios?”. To study these questions we built a complete recogni-
tion system and compared the performance of various feature transforms which
claim different degrees of independence: from generic features that make no in-
dependence claims (but were known to have good recognition performance), to
features (resulting from independent component analysis) which are supposed to
be independent, passing through transforms that only impose very weak forms
of independence, such as decorrelation.

It turns out that, with the help of some simple theoretical results, the analysis
of the recognition accuracy achieved by the different transforms already provides
significant support for the following qualitative answers to the questions above.
First, it seems to be the case that imposing independence constraints increases
the intrinsic complexity (Bayes error) of the recognition problem. In fact, our
data supports the conjecture that this intrinsic complexity is monotonically in-
creasing on the degree of independence. Second, it seems clear that great care
needs to be exercised in the selection of the independence measures used to
guide the design of independent component transformations. In particular, our
results show that approaches such as minimizing cumulants or searching for non-
Gaussian solutions are not guaranteed to achieve this goal. In fact, they can lead
to “independent components” that are less independent than those achieved with
“decorrelating” representations such as principal component analysis or wavelets.

2 Bounds on recognition accuracy

A significant challenge for empirical evaluation is to provide some sort of guar-
antees that the observed results are generalizable. This challenge is particularly
relevant in the context of visual recognition, since it is impossible to implement
all the recognition architectures that could ever be conceived. For example, the
fact that we rely on a Bayesian classification paradigm should not compromise



the applicability of the conclusions to recognition scenarios based on alternative
classification frameworks (e.g. discriminant techniques such as neural networks
or support vector machines). This goal can only be met with recourse to theo-
retical insights on the performance of recognition systems, which are typically
available in the form of bounds on the probability of classification error.

The most relevant of these bounds is that provided by the Bayes error, which
is the minimum error that any architecture can achieve in a given classification
problem.

Theorem 1 Given a feature space X and a query x € X, the decision function
which minimizes the probability of classification error is the Bayes or mazimum
a posteriori (MAP) classifier

g*(x) = argm?xPy|x(i|x), (1)

where Y is a random wvariable that assigns x to one of M classes, and i €
{1,...,M}. Furthermore, the probability of error is lower bounded by the Bayes
error

L*=1- Ex[mzax Py x (i[x)], (2)

where Ex means expectation with respect to Px (X).

The significance of this theorem is that any insights on the Bayes error that
may be derived from observations obtained with a particular recognition ar-
chitecture are valid for all architectures, as long as the feature space X is the
same. The following theorem shows that a feature transformation can never lead
to smaller error in the transformed space than that achievable in the domain
space.

Theorem 2 Given a classification problem with observation space Z and a fea-
ture transformation
T:Z2- X,

then
Ly > L% 3)

where L% and L% are, respectively, the Bayes errors on Z and X. Furthermore,
equality is achieved if and only if T is an invertible transformation.

The last statement of the theorem is a worst-case result. In fact, for a specific
classification problem, it may be possible to find non-invertible feature transfor-
mations that do not increase Bayes error. What is not possible is to find 1) a
feature transformation that will reduce the Bayes error, or 2) a universal non-
invertible feature transformation guaranteed not to increase the Bayes error on
all classification problems.

Since Bayes error is an intrinsic measure of the complexity of a classification
problem, the theorems above are applicable to any classification architecture.
The following upper bounds are specific to a family of architectures that we will



consider throughout this work, and are usually referred to as plug-in decision
rules [6]. The basic idea is to rely on Bayes rule to invert (1)

g% (x) = arg max Px|y(x|i)Py (1), (4)
and then estimate the quantities Pxy (x|i) and Py (i) from training images. This
leads to the following upper bound on the probability of error.

Theorem 3 Given a classification problem with a feature space X, unknown
class probabilities Py (i) and class conditional likelihood functions Px |y (xi), and
a decision function

9(x) = argmax px|y (x[i)py (i), (5)

the difference between the actual and Bayes error, is upper bounded by

PgX) #Y) - Ly < Z/Iwa(Xli)Py(i) — Dx|y (x[i)py (i)|dx.  (6)

In the remainder of this work we assume that the classes are a-priori equiprob-
able, i.e. Py (i) = 1/M,Vi. This leads to the following corollary.

Corollary 1 Given a classification problem with equiprobable classes, a feature
space X, unknown class conditional likelihood functions Px|y (x|i), and a deci-
sion function

g(x) = arg m?Xﬁx|Y(X|i); (M)

the difference between the actual and Bayes error is upper bounded by

P(gX)#Y)—-Ly <Agx (8)
where
Ay = Y KLIPxy (el Iy (el ©
is the estimation error and
KL[Px(0)]1Qx ()] = [ Px()log (o dx (10)

is the relative entropy, or Kullback-Leibler divergence, between Px (x) and Qx (X).

Bounds (3) and (8) reflect the impact of both feature selection and density
estimation on recognition accuracy. While the feature transformation determines
the best possible achievable performance, the quality of the density estimates
determines how close the actual error is to this lower bound. Hence, for problems
where density estimation is accurate one expects the actual error to be close to
the Bayes error. On the other hand, when density estimates are poor, there are
no guarantees that this will be the case.



The latter tends to be the case for visual recognition, where high-dimensional
feature spaces usually make density estimation a difficult problem. It is, there-
fore, difficult to determine if the error is mostly due to the intrinsic complexity
of the problem (Bayes error) or to poor quality of density estimates. One of the
contributions of this work is a strategy to circumvent this problem, based on the
notion of embedded feature spaces [21].

Definition 1 Given two vector spaces Xy, and X, m < n, such that dim(X,,) =
m and dim(X,) =n an embedding is a mapping

€: Xy > Xy (11)
which is one-to-one.

A canonical example of embedding is the zero padding operator for Euclidean

spaces
o R™ 5 R (12)

where /7 (x) = (x,0), x € R™, and 0 € R"™ ™.

Definition 2 A sequence of vector spaces {Xi,...,Xaq}, such that dim(X;) <
dim(X;y1), is called embedded if there exists a sequence of embeddings

Gi:Xi%XiI+1,i=].,...,d—1, (13)
such that Xj,, C Xiy1.
The inverse operation of an embedding is a submersion.

Definition 3 Given two vector spaces Xy, and X, m < n, such that dim(X,,) =
m and dim(X,) = n a submersion is a mapping

v: Xy = X (14)
which is surjective.

A canonical example of submersion is the projection of Euclidean spaces along
the coordinate axes

an  R" - R™ (15)
where 77 (%1, ..., Zm, Tmg1s -+ - Tn) = (X1, .., Zm). The following theorem shows

that any linear feature transformation originates a sequence of embedded vector
spaces with monotonically decreasing Bayes error, and monotonically increasing
estimation error.

Theorem 4 Let
T:R? - x c RY,

be a linear feature transformation. Then,

X, =nl(X),i=1,...,d—1 (16)



is a sequence of embedded feature spaces such that

t\’,'_'_l S Lt\ﬂ (17)
Furthermore, if X§ = {Xy,...,X4} is a sequence or random variables such that
X; € Xi,
X; =74(X),i=1,...,d (18)
and {g(x)}{ a sequence of decision functions
9i(x) = argml?xﬁxi‘y(xm) (19)
then
A!]i+1,Xi+1 > Agi,Xr (20)

Figure 1 illustrates the evolution of the upper and lower bounds on the prob-
ability of error as one considers successively higher-dimensional subspaces of
X. Since accurate density estimates can usually be obtained in low-dimensions,
the two bounds tend to be close when the subspace dimension is small. In this
case, the actual probability of error is dominated by the Bayes error. For higher-
dimensional subspaces two distinct scenarios are possible, depending on the in-
dependence of the individual random variables X;. Whenever these variables are
dependent, the decrease in Bayes error tends to be cancelled by an increase in
estimation error and the actual probability of error increases. In this case, the
actual probability of error exhibits the concave shape depicted in the left plot,
where an inflection point marks the subspace dimension for which Bayes error
ceases to be dominant.

The right plot depicts the situation where the variables X; are independent.
In this case, it can be shown that

A9i+17Xi+1 - AQhXi = Z KL[PXi+1|Y($|k)||ﬁX1’+1|Y(m|k)]a (21)
k

i.e. the increase in overall estimation error is simply the sum of the errors of the
individual scalar estimates. Since these errors tend to be small, one expects the
overall probability of error to remain approximately flat.

Hence, the shape of the curve of probability of error as a function of the
subspace dimension carries significant information about 1) the Bayes error in
the full space X and 2) the independence of the component random variables X;.
We will see in section § that this information is sufficient to draw, with reasonable
certainty, conclusions such as “the Bayes error of transform 7' is greater than that
of transform U”. With regards to independence, the ultimate test is, of course,
to implement a recognition system based on estimates of the joint density Px (x)
and compare with a recognition system based on the independence assumption,
i.e. Px(x) = [[; Px,(z;). When independence holds, the two systems will achieve
the same recognition rates. From now on, we will refer to the former system as
based on joint modeling and to the latter as based on independent modeling or
on the product of marginals.
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Fig. 1. Upper bound, lower bound, and actual probability of error as a function of
subspace dimension. Left: dependent features. Right: independent features.

3 Feature transforms

Since the goal is to evaluate the impact of independence on visual recognition, it
is natural to study transformations that lead to features with different degrees
of independence. We restrict our attention to the set of transformations that
perform some sort of space/space-frequency decomposition. In this context, the
feature transformation is a mapping

T:R" 5 R
z ->x=Wz

wherez € R¥isan xn image patch with columns stacked into a k-dimensional
vector (k = n?) and W the transformation matrix. In general, k > d, and one
can also define a reconstruction mapping

R:R? 5 R*
X 5 z=Ax

from features x to pixels z. The columns of A are called basis functions of the
transformation. When d = k and A = W7 the transformation is orthogonal.
Various popular space/space-frequency representations are derived from orthog-
onal feature transforms.

Definition 4 The Discrete Cosine Transform (DCT) [11] of size n is the or-
thogonal transform whose basis functions are defined by:
(2z + 1)im 2y + 1)jm

A . ”
(5,4) = a(aj) cos = L oos LT 0 <ijny<n  (22)

where a = \/1/n for i =0, and a = \/2/n otherwise.



The DCT has empirically been shown to have good decorrelation properties [11]
and, in this sense, DCT features are at the bottom of the independence spectrum.
Previous recognition results had shown, however, that it can lead to recognition
rates comparable to or better than those of many features proposed in the recog-
nition literature [20]. It is possible to show that, for certain classes of stochastic
processes, the DCT converges asymptotically to the following transform [11].

Definition 5 Principal Components Analysis (PCA) is the orthogonal trans-
form defined by
W =D~ '/2ET, (23)

where EDET s the eigenvector decomposition of the covariance matriz E[zz”].

It is well known (and straightforward to show) that PCA generates uncorre-
lated features, i.e. E[xx’] = I. While they originate spatial /spatial-frequency
representations, the major limitation of the above transforms as models for vi-
sual perception is the arbitrary nature of their spatial localization (enforced by
arbitrarily segmenting images into blocks). This can result in severe scaling mis-
matches if the block size does not match that of the image detail. Such scaling
problems are alleviated by the wavelet representation.

Definition 6 A wavelet transform (WT) [14] is the orthogonal transform whose
basis functions are defined by

.. . .\ 0<k,l<logy, 1
Ay ) = VR (252 = i) @ (2'y = ) (0.0 <1y <2 21) (24)

where ¥(x) is a function (wavelet) that integrates to zero.

Like the DCT, wavelets have been shown empirically to achieve good decorrela-
tion. While this is an important part of independence (all of it when the inputs
are Gaussian) there is in general a significant amount of higher-order dependen-
cies that cannot be captured by orthogonal components [15]. Eliminating such
dependencies is the goal of independent component analysis.

Definition 7 Independent Component Analysis (ICA) [4] is a feature transform
such that

Px(x) = H Px, (x:) (25)

where X = {X1,..., X4} is the random process from which feature vectors are
drawn.

An equivalent definition is to require that the mutual information between fea-
tures is zero (see [1] for details). The exact details of ICA depend on the particu-
lar algorithm used to learn the basis from a training sample. Since independence
is usually difficult to measure and enforce if d is large, ICA techniques tend to set-
tle for less ambitious goals. The most popular solution is to minimize a contrast



function which is guaranteed to be zero if the inputs are independent. Exam-
ples of such contrast functions are higher order correlations and information-
theoretic objective functions[4]. In this work, we consider representatives from
the two types: the method developed by Comon [5], which uses a contrast func-
tion based on high-order cumulants, and the FastICA algorithm [10], that relies
on the negative entropy of the features.

4 Experimental set-up

In order to evaluate the recognition accuracy achievable with the various feature
transformations, we conducted experiments on two image databases: the Bro-
datz texture database, and the Corel database of stock photography. Brodatz is
a standard benchmark for texture classification under controlled imaging condi-
tions, and no distractors. Corel is a good testing ground for recognition in the
context of natural scenes (e.g. no control over lighting or object pose, cluttered
backgrounds).

Brodatz contains 112 gray-scale textures that were broken down into 9 128 x
128 patches, leading to a total of 1008 images. This set was split into two sub-
groups, a query database containing the first patch of each texture and a retrieval
database containing the remaining 8. In the case of Corel, we selected 15 image
classes! each containing 100 color images. We then created a query and retrieval
database by assigning each image to the query set with a probability 0.2.

All color images were converted to the YBR color space. Where applica-
ble, the feature transformations were applied to each channel separately and
the resulting feature vectors combined by interleaving the color components ac-
cording to the pattern YBRY BR. ... For each channel, the feature space was
64-dimensional (three layers of wavelet decomposition and 8 x 8 image blocks
in the remaining cases) and consecutive observations were extracted with a step
of 2 (Brodatz) or 4 (Corel) pixels in each of the z and y directions. Public do-
main software by the authors of the techniques was used for learning the feature
transformations. All learning was based in two 100, 000-point samples extracted
randomly from the retrieval databases. Figure 2 presents the basis functions
learned from Brodatz for PCA, ICA with the method by P. Comon, and ICA
with the FastICA algorithm, as well as the DCT basis (wavelet basis do not have
block-based support and are not shown).

Once the different bases were computed, all image patches were projected
into each of them leading to a sample of feature vectors per image. Maximum
likelihood (ML) parameters of a Gaussian mixture model were then estimated
using the EM algorithm. The number of Gaussian components was held constant
(several values were tried with qualitatively similar results, here we report results
with 8 components), and a joint density for each of the embedded subspaces X;
was obtained by downward-projection of the joint density in X [21]. A Gaussian

Arabian horses, Auto racing, Owls, Roses, Ski scenes, religious stained glass, sunsets and sunrises, coasts, Divers
and diving, Land of the pyramids (pictures of Egypt), English country gardens, fireworks, Glaciers and mountains,
Mayan and Aztec ruins, and Oil Paintings.
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Fig. 2. Basis functions for DCT (top left), PCA (top right) ICA learned with Comon’s
method (bottom left) and ICA learned with the fastICA method (bottom right).

mixture with the same number of components was also fit to each of the scalar
variables X; to obtain the independent model.

To double-check the independence results we computed various statistical
measures of independence. The first was the KL divergence between the joint and
independent models KL [Px (x)||[]; Px;(z;)]- Since we wanted an alternative
measure of independence not affected by the quality of the mixture parameter
estimates, we used histograms to compute this statistic. However, in order to
avoid well known problems of histogram-based estimates in high dimensions, we
only considered average pairwise divergences

N 1
KL(X;) = — > KL [Px, x, (i, 7;)|| Px, (2:) Px, (z;)] - (26)
J#i
These divergence are measures of pairwise independence and should be zero
whenever independence holds.

One popular way to measure dependencies of order larger than two is through

high-order statistics, such as cross-cumulants. While the 2" order cross-cumulant

Cum[X,,XJ] = E[XzX]], Vi ;ﬁ ] (27)
is a measure of the correlation between two variables, the 4t"-order cross-cumulant

Cum[Xi,Xj,Xk,Xl] = E[X,XJXle] — E[XZXJ]E[Xle]
— BE[X; Xy E[X; Xi] — E[X; X)) E[X; Xy ], Vi # (4, k, 1),
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can serve both as a measure of 1) linear fourth-order dependence and 2) dis-
tance from Gaussianity [10], and higher-order cumulants capture dependencies
of higher order. Unfortunately, the number of terms in a cumulant grows ex-
ponentially with its order and the computations involved rapidly become in-
feasible. We computed cumulants up to 6"-order, but omit the formulas. All
cumulant information was summarized by the norm of the off-diagonal terms
(cross-cumulants), e.g.

[|Cumyl|| = Z Cum?[X;, X;, Xy, X] (28)
i,5,k,0#(c,c,c,c)

for the fourth-order cumulant. These statistics are zero when independence holds.

5 Results

Figure 3 presents the independence measures obtained on Brodatz. The curves on
the left plot represent the cumulative average KL divergence (26) after reordering
the X; such that KL(X 1) < KL(X ;)- These curves suggest the existence of
two groups: the first, consisting of the ICA techniques, achieves significantly
better pairwise independence than the second, consisting of the decorrelating
transforms. A somewhat different picture starts to emerge from the right plot
which shows the evolution of the cumulant norm as a function of its order. While
the ICA techniques (together with PCA) achieve the lowest 2"¢ and 4t order
cumulant norms, the slope of the curve (between 4" and 6" order) is larger
than that of the wavelet features. This indicates that, for higher orders, the
curves are likely to cross, in which case the wavelet representation would be
the most independent. This observation is supported by the results that follow
and suggests that minimizing cumulants up to a certain order does not really
provide any independence guarantees, since the dependencies can simply become
of higher-order.



0.35
0.9 2] 0.3 : /\
e — < DCT
0.85 5/‘/_/%\* = @ 025717 Toh o
. — — LV
c \“’H\N\%ﬁ S = |CA (P. Comon)
-% 0.8 \ s 0271 ca (fastiCA)
© @
9] cl o
& 0.75 [P 3 0.15
- PCA o
0.7 —— Wavelet 0.1
-= ICA (P. Comon) %
—« ICA (fastiCA) ot %
0.65] - - - 0.05 —_—
I ol s
08 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of subspaces Number of subspaces

Fig. 4. Recognition results on Brodatz. Left: Precision, at 30% recall, achieved with
joint modeling. Right: Precision loss inherent to the independence assumption.

In order to evaluate recognition accuracy we measured precision at various
levels of recall?. Since the results were qualitatively similar for all levels, we only
present curves of precision, as a function of subspace dimension, at 30% recall on
Brodatz and 10% recall on Corel. The left plot of Figure 4 shows the precision
achieved on Brodatz with joint modeling. The right plot presents the associated
precision loss® when the joint model is replaced by the product of the marginals.
This precision loss is a measure of the dependence between the features, since
both models should lead to the same result when independence holds.

Two major conclusions can be taken from the figure. First, the ordering of
transformations by degree of independence is quite surprising, with wavelets at
the top, followed by PCA, the two ICA methods, and the DCT (as a distant
last). While we want to avoid conclusions such as “feature transform X leads
to weaker dependencies” that may not generalize to other databases, it is clear
that this ordering is very different from that of Figure 3 (ICA techniques on top,
then DCT and PCA, and finally wavelets). This can only mean that quantities
such as pairwise KL divergence or a limited set of cross-cumulants do not really
capture what is going on in terms of independence, at least the aspects that are
important for recognition. While this is not completely surprising, since these
measures only capture pairwise or linear dependencies, it clearly indicates that
recognition is affected by much more sophisticated patterns of dependence. The
logical conclusion is that ICA techniques designed to minimize measures such as
those of Figure 3 may not always be of great use for recognition.

Second, the precision curves seem to comply very well with the theoretical
arguments of section 2. In particular, they are concave (there is a large increase

2 When the n most similar images to a query are retrieved, recall is the percentage
of all relevant images that are contained in that set, and precision the percentage of
the n which are relevant.

3 By precision loss we mean the difference between the precision achieved with the
joint and independent models.
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modeling. Right: Precision loss inherent to the independence assumption.

in precision from 1 to 8 dimensions that we do not show for clarity of the graph),
and tend to be flatter when the features are more independent. Remember that
compliance with the theory implies that the curves are dominated by the Bayes
error for all dimensions when the features are independent, and up to the inflec-
tion point when they are not. This is an important observation, since the more
independent features (flatter curves) have smaller precision than that achieved
at the inflection point of the less independent ones. In fact, a comparison of the
two plots reveals significant evidence in support of the conjecture that preci-
sion at the inflection point is a monotonic function of the degree of dependence
of the features! The natural conclusion is then that independence has a non-
negligible cost in terms of Bayes error. In particular, the precision achieved with
the most independent features (wavelet coefficients) is almost 10% bellow the
peak precision achieved with the less independent ones (DCT).

This conclusion is also supported by Figure 5, which presents recognition
results on Corel. Since this is a larger database and contains colored images,
192-dimensional feature space, the queries take significantly longer to compute.
For this reason, we restricted the analysis to the first 64 dimensions (and only
considered one of the ICA techniques) which are probably not enough to reach
the inflection point in all cases. Nevertheless, one can still confidently say that
the precision of the more independent feature transforms is roughly 10% lower
than the peak precision of the less independent transforms. The only significant
difference with respect to the results obtained on Brodatz is that ICA does
appear to produce features which are very close to independent, while the wavelet
coefficients are not independent.
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