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Abstract— In the last few years, image retrieval has evolved from early
simplistic solutions (such as histogram intersection) to more principled
approaches that can be shown to be optimal under sensible criteria for
the retrieval problem. We discuss a decision theoretic formulation that
enables the design of systems where all components are optimized with
respect to the same end-to-end performance criteria: the minimization
of the probability of retrieval error. This discussion includes both a
theoretical characterization of how the probability of error is affected
by the design of the basic components of a retrieval system (feature
transformation, feature representation, and similarity function) and
experimental evidence of how various design choices impact the retrieval
performance.

I. INTRODUCTION

An architecture for content-based image retrieval (CBIR) consists
of three fundamental building blocks: 1) a feature transformation from
the space of image observations (e.g. pixels) to a feature space with
better retrieval properties, 2) a feature representation that compactly
describes how each of the database image classes populates this
space, and 3) a similarity function that allows ranking the database
classes by similarity to a query. Ideally, one would like to design
retrieval systems where all retrieval components are optimized with
respect to the same performance criteria. Since the ultimate goal of
any retrieval system is to be correct as often as possible, a natural
choice is the minimization of probability of retrieval error (MPE). It
leads to a generic retrieval architecture that is not tied to a particular
type of imagery or database, and it makes a vast body of existing
decision-theoretic results applicable to the retrieval problem. In this
paper we summarize some of our recent work on MPE retrieval
systems [1]–[4].

II. DECISION-THEORETIC IMAGE SIMILARITY

A retrieval system is a mapping from a feature space
�

to the
index set of the � classes in the database.

Definition 1: Given a feature space
�

and a set of � image
classes � , a minimum probability of error (MPE) retrieval system
is the mapping ��� ���	��

��������� ���
that minimizes ����� ��������� ��!" � � �
Under this definition, the optimal similarity function is automatically
determined by the following well known theorem [5].

Theorem 1: Given a feature space
�

and a query # , the similarity
function that minimizes the probability of retrieval error is the Bayes
or maximum a posteriori (MAP) classifier�%$&� # � "('*),+.-/'102 � �43 � �6587 # � � (1)

Furthermore, the probability of error is lower bounded by the Bayes
error 9 $: " 
<;>=@?�A -/'102 � �.3 � �6587 # �CB � (2)

where
=<?

means expectation with respect to
� � � # � .

Proof: See [7] for all proofs.

The MAP classifier can be implemented by application of Bayes
rule �%$&� # � "('1),+D-/'102 EF G HJI�KML +

� �<3 � � #
G 7 5C�ON

KML +
� � �65C� �

(3)

where
� �<3 � � # 7 5C� is the class-conditional likelihood for the

5CP6Q
class,� � �65R�

a prior probability for this class, and we have used assumed
that the feature vectors in # are mutually independent. Equation (3)
is denoted by Bayesian retrieval criteria and image retrieval based
on it as decision-theoretic retrieval (DTR). It requires the selection
of a feature space and a feature representation.

III. DECISION-THEORETIC GUIDELINES FOR IMAGE

REPRESENTATION

The following theorem shows that the choice of features determines
the lowest possible error that can be achieved for a given database.

Theorem 2: Given a retrieval system with observation space S and
a feature transformation T � S �	�U�
then 9 $:(V 9 $W (4)

where
9 $W and

9 $: are, respectively, the Bayes errors on S and
�

.
Furthermore, equality is achieved if and only if

T
is an invertible

transformation.
The theorem shows that, by introducing a feature transformation, it
is never possible to decrease the Bayes error. On the contrary, this
lower bound on the error probability will increase in all cases except
where the feature transformation is invertible. While a necessary
condition, low Bayes error is not sufficient to guarantee accurate
retrieval since the actual error may be much larger than the lower
bound. In the remainder of this work we assume that the classes
are a-priori equiprobable, i.e.

� � �65C� " 
*X � �ZY 5 . This leads to the
following theorem.

Theorem 3: Given a retrieval problem with equiprobable classes,
a feature space

�
, unknown class conditional likelihood functions� �<3 � � # 7 5C� , and a decision function��� # � "['*),+.-/'*02]\^ �<3 � � # 7 5C� � (5)

the difference between the actual and Bayes error is upper bounded
by �_������� ��!" � � ; 9 $:a`cbed � : (6)

where b d � : " F 2gf 9 A � �<3 � � # 7 5R��7M7 \^ �<3 � � # 7 5C�CB � (7)

is the estimation error.
The theorem shows that the difference between the actual probability
of retrieval error and the Bayes error is upper bounded by the error
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in the density estimates. It follows that, if the Bayes error is small,
accurate density estimation is a sufficient condition for high retrieval
accuracy. This observation has an immediate impact on the selection
of the probabilistic model, or feature representation, used to estimate
the unknown densities

� ��3 � � # 7 5C� : it should be flexible enough to
enable accurate density estimates in high-dimensional spaces. In this
context, we have compared the properties of various probabilistic
models and shown that the Gaussian mixture models exhibit various
attractive properties.

Definition 2: A Gaussian mixture is a density of the form��� � # � " �F
� H I � ���

� # ��� � �	� � � (8)

where � � # �
� ��� � " 

� ��
 � ��� 7 � 7�������

3 3 ? ��� 3 3 � � (9)

is the Gaussian density of mean
�

and covariance
�

, and7M7 # ;�� 7M7 � " � � # ;�� ��� � � I � # ;�� � � (10)
See [3], [4] for more details.

IV. OPTIMAL FEATURE TRANSFORMATIONS

The choice of feature transformation has impact in both the Bayes
and estimation errors. While the impact on the Bayes error is direct
(the Bayes error depends uniquely on the feature transformation),
the impact on the estimation error is more subtle. It derives from
the phenomena known as the curse of dimensionality: for a given
amount of training data, the quality of density estimates degrades
as the dimension of the feature space increases. The design of an
optimal feature transformation must, therefore, account for both the
Bayes and estimation errors. To understand the associated trade-offs
we rely on the notion of embedded feature spaces.

A. Embedded feature spaces

Definition 3: Given two vector spaces
���

and
� �

, �! #" , such
that $

5
�
� �%� � " � and $

5
�
� � � � " " an embedding is a mapping

& � � � � � � (11)

which is one-to-one.
A canonical example of embedding is the zero padding operator for
Euclidean spaces ' �� ��( � � ( �

(12)

where
' �� � # � " � # �*) � , #,+

( �
, and

) +
( � � � .

Definition 4: A sequence of vector spaces
�1� I ���������,�.- � , such that

$
5
�
� � 2 �  /$

5
�
� � 210 I � , is called embedded if there exists a sequence

of embeddings

& 2 � � 2 �	�32240 I � 5 " 

������� � $ ; 

� (13)

such that
� 2210 I�5 � 210 I .

The inverse operation of an embedding is a submersion.
Definition 5: Given two vector spaces

� �
and

� �
, �! #" , such

that $
5
�
� �%� � " � and $

5
�
� � � � " " a submersion is a mapping

6 � � � � � � (14)

which is surjective.
A canonical example of submersion is the projection of Euclidean
spaces along the coordinate axes

� �� �7( � � ( �
(15)

where �
�� �98 I ��������� 8 � � 8 � 0 I ��� ����� 8 � � " �98 I ������� � 8 � � .

The following theorem shows that any linear feature transformation
originates a sequence of embedded vector spaces with monotonically
decreasing Bayes error, and monotonically increasing estimation
error.

Theorem 4: Let
T �:( - �	� 5 ( - �

be a linear feature transformation. Then,� 2 " � -2 � � � � 5 " 
&������� � $ ; 
 (16)

is a sequence of embedded feature spaces such that9 $:<;1= � ` 9 $:<; � (17)

Furthermore, if
� - I " � � I ����� ��� � - � is a sequence or random

variables such that
� 2 + � 2 ,� 2 " � -2 ���U� � 5 " 

��� ����� $ (18)

and
� ��� # � � - I a sequence of decision functions� 2 � # � "('*),+.-/'10> \^ � ; 3 � � # 7 ?%� (19)

then b d ;1= � � :<;1= � V b d ; � :<; � (20)

It follows that, in general, it is impossible to minimize the Bayes
and estimation errors simultaneously. On one hand, given a feature
space

� 2 it is usually possible to find a subspace where density
estimates are more accurate. On the other, the projection onto this
subspace will increase the Bayes error. The practical result is that
there is always a need to reach a compromise between the two
sources of error. This is illustrated by Figure 1 which shows the
typical evolution of the upper and lower bounds on the probability
of error as one considers successively higher-dimensional subspaces
of a feature space

�
.
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Fig. 1. Upper bound, lower bound, and probability of error as a function of
subspace dimension.

Since accurate density estimates can usually be obtained in low-
dimensional spaces, the two bounds tend to be close when the
subspace dimension is small. In this case, the probability of error is
dominated by the Bayes error. For higher-dimensional subspaces the
decrease in Bayes error is canceled by an increase in estimation error
and the actual probability of error increases. Overall, the curve of the



subspacedim
��� � T � � � �<3 � � # 7 5R� � 5 " 

��� ����� � � �� for each query image

� � + �
:

– apply the transformation

T
to a collection of observations

from
� � to obtain a set of query feature vectors # � "� # � � I ������� � # � � E �

– for each subspace dimension � " 

��� ����� $� for each image class
5 " 

� ������� �� apply (22) to obtain the embedded mixtures� ���13 � � # 7 5C�� compute

^ 2� � G " 
	 EF
> H I K L +

� ���*3 � � � -G � # � � > ��7 5C� �
� sort the ^ 2� � G by decreasing value and, based on the

resulting order, evaluate some measure of retrieval per-
formance (e.g. precision at some level of recall) 
 � �

G
.� average the retrieval measure across queries 


G "
�X 7 ��7�� � 
 � �
G �

� return the subspace dimension � $ "�'*),+.-/'*0
G


G

and associ-
ated performance score 


G

 .

Fig. 2. Algorithm for determining the optimal subspace dimension for
a retrieval problem with feature transformation � , and class densities��� �<3 ������� ���������! "�$#%#�#���&!'

.

probability of error exhibits the convex shape depicted in the figure,
where an inflection point marks the subspace dimension for which
Bayes error ceases to be dominant. Hence, given a feature space

�
,

the MPE-optimal retrieval system is the one which operates on this
inflection point.

The next lemma shows that, under the mixture representation, it
is trivial to derive the density estimates on each of the embedded
subspaces

� G
from the density on

�
.

Lemma 1: Let
�

be a feature space,
�&� G � a sequence of em-

bedded subspaces according to (16), and
� - I a sequence of random

vectors according to (18). If, under class
5
,
�

is distributed according
to the Gaussian mixture density� �<3 � � # 7 5C� " �F

( H I � 2
� ( � � # ��� 2 � ( ��� 2 � ( � (21)

then,
Y �3+ 
&��������� $ ,� ���&3 � � # 7 5C� " �F

( H I � 2
� ( � A # �%) -G � 2 � ( �%) -G � 2 � ( � ) -G � � B � (22)

where
) -
G " A * G ) - �

G B
, is the projection matrix associated with � -

G
,*

G
the �,+-� identity matrix, and

)<- �
G

a matrix of zeros.
The collection of densities in (22) is denoted by the family of

embedded mixture models (EMMs) associated with
�

. Notice that
once an estimate is available for

� � 2 � ( ��� 2 � ( ��� 2 � ( � the parameters of� �.�*3 � � # 7 5C� are obtained by simply extracting the first � components
of the mean vectors

� 2 � ( and the upper-left �/+0� sub-matrix of the
covariances

� 2 � ( . The lemma suggests an efficient cross-validation
procedure to find the optimal subspace dimension of a given trans-
formation

T
: select a set of query images

� " � � I ��������� �21 � ,
establish the associated retrieval ground truth, and use this set to
infer the optimal subspace dimension. An algorithmic description of
this procedure is given in Figure 2. It remains to determine how the
feature transformation

T
can itself be found. One possibility, that

optimal transform
��� �%3 �

1) select a reference transformation in
3

, e.g.

T54 I76
;

2) for each image class
5 " 

������� � � , use a standard max-

imum likelihood estimation technique, e.g. the expectation-
maximization algorithm [6], to determine the mixture parame-
ters of

� �98
�7:
3 � � # 7 5C� ;

3) for each transformation ; " 
 ��� �����%<
� let

T=4 I � > 6 " T=4 > 6@? � T=4 I76 � � I� compute, for each image class
5 " 

������� � � , the param-

eters of
� � 8BA

:
3 � � # 7 5R� using (25) and (26).� let

� � $> � 
 $> � " subspacedim
��� � T 4 > 6 � � � � 8BA : 3 � � # 7 5C� � 5 "
&��������� � � �

4) let ; $ "('1),+D-/'10 > 
 $> and � $ " � $> 
 ;

5) return

T 4 > 
 6G

 " � -

G

 � T 4 > 
 6 �

Fig. 3. Algorithm for determining the best feature transformation, and
subspace dimension for a retrieval problem with transformation dictionaryC

.

we explore next, is to restrict the search to a finite dictionary of
transformations that satisfy some properties known to be important
for visual recognition, e.g. invariance to certain image mappings or
plausibility under what is known about human perception.

B. Optimal features

Given a finite collection
3 " � T 4 I76 ��������� T 4BD 6 � of feature trans-

formations, the optimal transformation can be found by exhaus-
tive search based on the algorithm of Figure 2. In this case, the
only non-trivial issue is how to efficiently estimate the densities� � ��3 � � # 7 5C� � 5 " 

����� ��� ��� on the different feature spaces. Notice
that if

T=4FE 6 � S � � 4FE 6
and

T54 � 6 � S � � 4 � 6
are two

invertible transformations in
3

, then the transformation

TG4FE � � 6 "T=4 � 6H? � T=4FE 6 � � I maps
� 4FE 6

into
� 4 � 6

. It can be shown that if in� 4FE 6
the feature distribution is, for class

5
,� � 8BI

:
3 � � # 7 5C� " �F

( H I � 2
� ( � � # ��� E2 � ( �	� E2 � ( � (23)

then, on
� 4 � 6

,� � 8FJ
:
3 � � # 7 5R� " �F

( H I � 2
� (	� � # �
� �2 � ( �	� �2 � ( � (24)

where
� �2 � ( " K

4FE � � 6 � E2 � ( (25)� �2 � ( " K
4FE � � 6 � E2 � ( � K 4FE � � 6 � � � (26)

Therefore, it suffices to perform density estimation on a reference
subspace, e.g.

� 4 I76
, in order to obtain the mixture parameters

associated with all transformations in
3

. The search for the optimal
feature transformation can thus be performed with the algorithm of
Figure 3.

V. EXPERIMENTAL EVALUATION

For a number of years we have been performing extensive evalu-
ation of the impact, on the probability of error, of various aspects of
the three components of a retrieval system [1], [4], [7], [8]. Here, we
will only offer a small subset of these results, oriented to illustrate
how sub-optimal design decisions can have a significant influence on
the overall retrieval performance. We present results on the widely
used Brodatz (1008 texture images) and Corel (1500 color images
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Fig. 4. Left: Precision, at ����� recall, on Brodatz. Right: Precision, at ����� recall, on Corel.

of natural scenes) databases. All mixtures contain � Gaussians of
diagonal covariance, and all mixture parameters were learned with
the EM algorithm [6]. Each image in the database was considered
as a different class, and a uniform prior was assumed for the image
classes.

This set of experiments was designed to assess the retrieval perfor-
mance of various feature transformations. For reasons that are detailed
in [7] we considered five multi-resolution transforms: discrete cosine
transform (DCT), a wavelet decomposition (Daubechies’), principal
component analysis (PCA), and two independent component analysis
techniques (ICA). In all cases, the region of support of the features
was such to originate ��� coefficients per color channel, which were
interleaved according to the pattern YBRYBR... Figure 4 presents
curves of precision, as a function of subspace dimension, at 	�

�
recall on the two databases.

Since precision is inversely proportional to the probability of error
one would expect, from the theoretical arguments of section IV-A,
the precision curves to be concave. This is indeed the case (there is
a large increase in precision from



to � dimensions that we do not

show for clarity of the graph) for all transformations. In terms of the
relative performance of the different transforms, the DCT is the top
performer for both databases reaching high precision in both cases.
On the other hand, PCA always performs poorly. This is a interesting
result, given that PCA has been widely used in visual recognition [9],
[10]. The performance of the other features seems to be significantly
more dependent on the database. Wavelets do quite well on Corel, but
very poorly on Brodatz, ICA does better on Brodatz than on Corel.

The main insight to be retained from these experiments is that a
careless choice of the feature transformation can lead to very poor
retrieval performance. On Brodatz the peak precision of the worst
transformation (wavelet) is


 
�� below that of the best (DCT), on
Corel the variation is almost





� . Even for a given transformation,

precision can vary dramatically with the number of embedded sub-
spaces. For example, the precision of the DCT features on Brodatz
drops from the peak value of about �



� to about �



� when all the

subspaces are included. These observations emphasize the importance
of the feature selection algorithm discussed in section IV-B.
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