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Abstract

Problems such as object recognition or image retrieval
require feature selection (FS) algorithms that scale well
enough to be applicable to databases containing large num-
bers of image classes and large amounts of data per class.
We exploit recent connections between information theo-
retic feature selection and minimum Bayes error solutions
to derive FS algorithms that are optimal in a discriminant
sense without compromising scalability. We start by formal-
izing the intuition that optimal FS must favor discriminant
features while penalizing discriminant features that are re-
dundant. We then rely on this result to derive a new family
of FS algorithms that enables an explicit trade-off between
complexity and classification optimality. This trade-off is
controlled by a parameter that encodes the order of feature
redundancies that must be explicitly modeled to achieve the
optimal solution. Experimental results on databases of nat-
ural images show that this order is usually low, enabling
optimal FS with very low complexity. In particular, the al-
gorithms now proposed are shown to significantly outper-
form currently available scalable alternatives: from purely
discriminant approaches to approaches that only empha-
size redundancy-reduction, e.g. the commonly used vari-
ance compaction methods.

1. Introduction
Various challenging problems in vision, including visual
recognition, image retrieval, or the recognition of people
and events, can be formalized as statistical classification
problems. It is well known that one crucial ingredient for
success in these problems is a representation based on a dis-
criminant set of features and, for this reason, feature selec-
tion has a long history in the machine learning and pattern
recognition literatures. However, various attributes of tradi-
tional feature selection (FS) solutions, such as a significant
emphasis on binary classification problems, the expectation
of relatively small amounts of data, or the assumption of
parametric sources, are not realistic in the vision context. In
fact, for problems such as image retrieval, where 1) there
are usually large numbers of visual classes to be processed,

2) the data is non-Gaussian and non-homogeneous (and the
assumption of any parametric model is, therefore, highly re-
strictive) and 3) there is a need to process very large training
sets, traditional feature selection strategies either 1) simply
fail to achieve meaningful results, 2) take an unrealistic (and
practically infeasible) time to compute, or 3) both1.

Some of these limitations, such as the dependence on
particular probabilistic models, have been eliminated by re-
cent advances in machine learning and already translated
into success stories for vision, e.g. the boosted face de-
tector by Viola and Jones[2], that can be seen as a high-
performance feature selection algorithm. On the other hand,
these solutions exacerbate some of the limitations enumer-
ated above, namely the unavailability of (practical) exten-
sions to problems with more than two classes, and an im-
mense training complexity. Due to this inherent lack of
scalability, most existing FS techniques are not applicable
to large-scale problems, such as retrieval or recognition.

Somewhat surprisingly, the problem of provably optimal
feature design with low complexity has not yet been the
subject of extensive research in either the vision or learn-
ing literatures. Consequently, in most domains where scal-
ability is a requirement of paramount importance, feature
optimality is commonly traded for computational tractabil-
ity. For example, while various intuitive justifications have
been offered for most feature sets commonly adopted in
the retrieval literature - e.g. the biological plausibility of
Gabor or wavelet representations [3, 4, 5], or the intuitive
appeal of perceptually salient attributes such as color and
edginess [6, 7, 8, 9, 10, 11] - little has been shown in terms
of their optimality. To compound the problem, (and, once
again, due to a lack of computationally feasible alternatives)
it is still the norm for large scale recognition or retrieval sys-
tems to resort to sub-optimal principles, such as energy (or
variance) compaction, to select the best subsets among these
features [12, 6, 13, 14].

In order to avoid what appears to be an intrinsic lack of
scalability of optimal feature design, when optimality is ex-

1For example, [1] reports that the application of a traditional feature se-
lection technique to an image retrieval problem of relatively small dimen-
sions (two classes,

�����
examples per class) required 12 days of processing

time.
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plicitly defined in the minimum probability of error (MPE)
sense, we have been recently pursuing alternative, and more
scalable, formulations. In particular, we have shown that
information theoretic solutions based on the maximization
of the mutual information between features and class labels
(the infomax criteria [15]) have various appealing properties
for FS, in the context of vision problems [16, 17]. These
properties, which are reviewed in section 2, include 1) near
optimality in the MPE sense, 2) significantly better scal-
ability than most existing FS techniques, and 3) the exis-
tence of a set of conditions under which the implementation
complexity is equivalent to that of the simplest known sub-
optimal methods (e.g. principal component analysis, PCA)
without compromise of MPE optimality.

The third property is particularly interesting because the
validity of these conditions appears to be supported by vari-
ous recent studies in image statistics [18, 19]. While this
empirical observation is impossible to prove analytically,
it is possible to test it through the following indirect em-
pirical strategy: design FS algorithms which assume the
conditions to hold and evaluate their classification optimal-
ity. This strategy motivated a FS technique based on the
maximization of the marginal diversity of the selected fea-
tures [16] (which consists of selecting the set of features
with least overlapping marginal class-conditional distribu-
tions). While inherently discriminant, and computationally
trivial, the MMD solution is sub-optimal in the presence
of feature dependencies that strongly convey information
about the class label2. This can be problematic, since our
experiments indicate that, for natural images, such depen-
dencies are not always neglectable.

In this paper we show that, when this is the case,
infomax-optimal FS cannot be achieved by stressing dis-
crimination alone but requires a good balance between
maximizing the discriminant power of the selected features
and minimizing their redundancy: while a highly discrimi-
nant feature can be a major asset for classification, a second
highly discriminant feature that does not add much informa-
tion about the class label (e.g. which simply replicates the
information contained in the first) is highly undesirable3.
In this context, MMD and variance-based techniques, such
as PCA, occupy the two ends of the image representation
spectrum: while the former places all emphasis on discrim-
ination, the latter only strives to eliminate redundancies. It
seems natural to expect that better performance can be at-
tained by FS solutions that jointly address the two compo-
nents of the problem. One of the interesting aspects of the
information theoretic formulation is precisely that it pro-
vides the appropriate mathematical formalism for capturing

2Note that these are distinct from generic feature dependencies, which
are prevalent but do not affect the performance of MMD FS.

3Because it consumes a valuable resource - a slot in the set of selected
features - without adding any discriminant power.

all the subtleties involved, e.g. that while generic dependen-
cies are irrelevant, dependencies that convey information
about the class label are important.

In particular, it is shown that solutions which jointly
address discrimination and redundancy reduction do exist
within the infomax framework. For this, we introduce the
concept of an � -decomposable set of features, i.e. a feature
set that can be divided into mutually exclusive subsets of �
features such that:� features within each subset are arbitrarily dependent,� the dependence between subsets does not convey in-

formation on the image class.

We then show that, when � -decomposability holds,
infomax-optimal FS only requires density estimates of or-
der ���	� . For low values of the decomposability order� , this implies that optimal FS is achievable with reduced
computational complexity. We next introduce a family of
algorithms, parameterized by � , that allow the explicit con-
trol of the trade-off between computational complexity and
the ability to model arbitrary feature dependencies. This en-
ables us to evaluate the value of � that achieves the optimal
balance between the maximization of marginal diversity and
the minimization of feature redundancies. Experiments on
various image databases consistently indicate that, for vari-
ous of the feature transformations in common use in the re-
trieval and recognition literatures, optimal performance can
be achieved with models that explain arbitrary dependen-
cies of second order. The resulting algorithms are shown to
substantially outperform FS based on either variance com-
paction or MMD alone, without significant cost in terms of
computational efficiency.

2. Information theoretic feature selec-
tion

Information theory provides a principled way to capture the
intuition that the best feature space for a given classifica-
tion problem is the one which keeps most information about
the class labels. More formally, given a 
 -ary classifica-
tion problem with observations drawn from random vari-
able ���� , and a set of feature transformations of the
form ��������� , the best feature space is the one that
maximizes the mutual information ������� �"! where � is the
class indicator variable (i.e. a random variable that takes
values in #$�&%(')'('*%+
-, ), �/.0�1�2��! , and

�3�4�5�+�6!7.98;:=<?>3@BA CD�FEG% HI!KJML$N >�@BA CO��EG%PHQ!> @ ��ER!S> C ��HI!&T EG' (1)

Information-theoretic feature selection (ITFS) has various
appealing properties that we summarize in this section
(see [17] for a more detailed discussion).
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2.1. Bayes error
We start by recalling that the tightest possible lower bound
on the probability of error achievable by any classifier on
a given classification problem is the Bayes error. For an
 -class problem on a feature space � it is given by [20]U�V .W�YX[ZY\^] _a`cb:ed Cgf @ ��H�h ER!jij% (2)

where ZY\ means expectation with respect to d @ �FER!*%PE��� . Since the Bayes error depends only on the selection
of the feature space � , and there is at least one classifier
whose probability of error is equal to (2), the Bayes classi-
fier, the Bayes error is the ultimate discriminant measure for
FS. However, due to the nonlinearity of the _a`kbl�Pm ! opera-
tor, it can be difficult to work with this cost directly. This
is particularly true in the FS context, where the combina-
torial complexity of finding a globally optimal solution is
usually avoided by relying on greedy procedures (e.g. se-
quential search [21]) that, to obtain an optimal solution in
high-dimensions, start from a low dimensional solution and
incrementally add features to it. Since, due to the non-
linearity of (2), it is impossible to decompose the overall
cost into a function of simpler terms depending only on fea-
ture subsets, these type of strategies cannot be applied to the
minimization of Bayes error.

2.2. Information theoretic costs
In the FS context, mutual information is an appealing alter-
native to the Bayes error for two main reasons: 1) it is sig-
nificantly easier manipulate, and 2) it is possible to establish
formal connections between the two costs. In particular, the
following properties hold [17].

Properties 1 (mutual information)

1. �3�4�n� �o!7.0pq���1!rX[ps�4�6h �6! , where pq���6!�.XntO> @ �FER!uJvL&Nw> @ �FER! T E is the entropy of � [22].

2. �3�4�n� �o! can be written as �����n�+�x! .y�z U|{ d @Df C ��Egh HQ!)hvh d @ ��ER!j}k~ C where
z U ] >rhMh ��i .t�>w�FER!KJML$N��c� \k�� � \k� T E is the Kullback-Leibler divergence

between > and � , and �4�r��HQ!P� C .�� : d C �FHQ!P�r��HI! the
expectation with respect to the class priors.

3. up to scaling, ps�4�6h �6! is a lower bound on the Bayes
error. The bound is tight in a well-defined sense, and
provides a close approximation in most situations of
practical interest.

4. if � is � -dimensional and � V .���� V� %(')'('*%P� V� ! the
optimal feature subset of size � , then

����� V %+�1!g. �8�*� � ���F� V� %+�1! (3)

X �8�*��� ] ���F� V� � � V� A ��� � !GX����F� V� � � V� A ��� � h �1!Ii2'
where � V� A ��� � .�#�� V� %(')'('*%P� V��� � , .

It follows from Property 1 that maximizing the mutual
information is equivalent to minimizing the posterior en-
tropy ps�4�6h �6! (since ps���x! does not depend on the feature
space). This provides an intuitive justification for ITFS, as
the search for the feature space where the uncertainty about
which class is responsible for each observation is mini-
mized. Property 2 shows that the ITFS solution is equivalent
to maximizing the average KL divergence (over all classes)
between the class-conditional densities d @Df C �FEgh HQ! and the
unconditional feature density d @ ��ER! . Since the latter is just
the average (over all classes) of the d @Df C ��Egh HQ! and the KL
divergence is a measure of dissimilarity between probabil-
ity densities, the property shows that ITFS is inherently dis-
criminant: it rewards feature spaces where the density of
each class is as distant as possible from the average density
over all classes. Property 3 provides a formal justification
for ITFS as a discriminant FS technique by establishing a
connection to the Bayes error. This connection suggests that
infomax solutions are also optimal in the minimum Bayes
error sense. We omit the details here, see [16] for a com-
plete presentation. Finally, Property 4 reveals two interest-
ing properties of the information theoretic formulation of
the FS problem. First, it formalizes the statement that in-
formation theoretic costs are easier to manipulate than the
Bayes error, by explicitly providing a decomposition of the
optimal infomax cost into a sum of simpler terms. Second,
it unveils an interesting interpretation of optimal FS as a
trade-off between the maximization of discriminant power
and the minimization of redundancy.

To understand this, it helps to interpret � � as the �u���
most important feature, and � V� A ��� � as the set of features
that must already have been selected by the time � � is.
While, from Property 2, the first summation in (3) is a mea-
sure of the individual discriminant power of the optimal
features, the second summation is a penalty on all com-
binations of � � and � V� A ��� � that are jointly informative
about the class label � 4. This compensates for any double-
counting of discriminant power due to the first term: when
a feature is highly discriminant, all other features that are
highly correlated with it are also discriminant, but would
not add much to the overall discriminant power of the se-
lected feature set. Hence, the second term penalizes all
redundancies that carry information about the class label.
Note that a direct corollary of this observation is that, for
FS purposes, all redundancy that does not carry informa-
tion about the class labels can be safely ignored. This im-

4Note that this term is zero when �O� and ��� I¡ �)¢   are jointly indepen-
dent of, i.e. completely uninformative about, the class label £ .
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plies that independent modeling of features that are highly
correlated may not necessarily lead to a loss of optimality.

2.3. Connection to image statistics
The last point is particularly interesting in light of various
recent studies on image statistics, that have reported the ob-
servationof universal patterns of dependence between the
features of various biologically plausible image transforma-
tions [18, 19]. For example, spatially co-located wavelet co-
efficients at adjacent scales tend to be dependent, exhibiting
the same pattern dependence (bow-shaped conditional den-
sities) across a wide variety of imagery [18]. Even though
the fine details of feature dependence may vary from one
image class to the next, these studies suggest that the coarse
structure of the patterns of dependence between such fea-
tures follow universal statistical laws that hold indepen-
dently of the image class. The potential ramifications of
this conjecture are quite significant since it implies that, in
the context of visual processing,��¤X¥� �8����� ���F� V� � � V� A ��� � !7¦ ��§X¨� �8�*��� ���F� V� � � V� A ��� � h �1!*%

(4)
in which case (3) reduces to

����� V % �o!7¦ �8�*� � ���F� V� % �o!�' (5)

The �u��� term on this summation is referred to as the
marginal diversity of feature � � . The practical significance
of this result is that the optimal solution can be obtained by
simply computing this quantity for each feature, an opera-
tion of trivial complexity [16], and ordering the features by
its (decreasing) value. This is the essence of FS by maxi-
mum marginal diversity (MMD), and the algorithm that was
introduced in [16].

While the computational simplicity of MMD is quite ap-
pealing, its effectiveness for recognition problems will de-
pend on the validity of the assertion, implicit in (4), that (on
average) feature dependencies do not provide information
about the class label. This is a difficult assertion to prove,
since a precise characterization of how well (4) holds would
require the accurate estimation of the joint densities of a
large number of features. Such estimation seems infeasible,
given the well known limitations of density estimation in
high-dimensional spaces.

3. A family of ITFS algorithms
In this paper, we address this question through an alter-
native, indirect, strategy, based on the sequential relax-
ation of the assumption that feature dependencies are non-
informative (with regards to the class label). For this, we

start by grouping the features into a collection of disjoint
subsets. The features within each subset are allowed to
have arbitrary (i.e. informative) dependences, while the de-
pendences between the subsets are constrained to be non-
informative. By gradually increasing the cardinality of
these subsets we move from the scenario where we have
a large collection of individual features that all depend in
a non-informative way (the scenario where MMD is opti-
mal), to one where we have a single set of features that all
depend in informative ways (the completely unconstrained
scenario). We then extend (5) to account for each of these
scenarios, and obtain the associated sequence of optimal FS
algorithms.

This strategy is interesting in two ways. First, by apply-
ing these algorithms to real recognition tasks and measuring
the error rates associated with the resulting sequence of fea-
ture spaces, we can identify the cardinality at which the as-
sumption of non-informative dependences between feature
subsets becomes realistic. Hopefully this cardinality will
be small, enabling optimal FS with reduced computational
complexity. In this regard, while the MMD assertion that
all dependencies are non-informative may be too restrictive,
one would expect this property to hold for at least some of
the dependences. For example, the fact that the correla-
tion between wavelet coefficients is significant for imme-
diate neighbors (in both space and scale), rapidly decaying
for coefficients at very different scales or orientations, hints
that most pairs of coefficients are not jointly informative
about the image class. Second, the resulting family of algo-
rithms enables a continuous trade-off between computation
and optimality. If the cardinality at which the inter-subset
dependencies cease to be informative is � , algorithms that
assume a (gradually) smaller cardinality will be (increas-
ingly) sub-optimal but computationally more efficient.

3.1. © -decomposability
We start by introducing the concept of a ��X T«ª�¬*�® > k¯�°K± � ªfeature set.

Definition 1 Let �².³��� � %(')'(')%P� � ! be a feature set of
size � . The set � is � -decomposable, or decomposable at
order � , if and only if there is a set of mutually exclusive
feature subsets ´µ.9#k¶ � %)'(')')%�¶n· �r¸ ¹»º , such that

¶ : .½¼ #�� � : � � � ¹M¾ � %(')')')%P� : ¹ ,$% if H�¿½À��5Ác�SÂ«%#�� � : � � � ¹M¾ � %(')')')%P� � ,«% if HG./À��5Ác�SÂ
and, for all ���Ã#�Ä;%)'(')'*%+�[, ,· ��� � ¸ ¹»º8 : � �ÆÅ ���F� � �3Ç¶ : A � h ¶ � %)'(')'*%�¶ : � � !rX[�3��� � �3Ç¶ : A � !jÈ1. (6)· ��� � ¸ ¹»º8 : � � Å ���F� � � Ç¶ : A � h ¶ � %)'(')'*%�¶ : � � %+�1!rX[�3��� � � Ç¶ : A � h �o! È '
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where Ç¶ : A � is the subset of ¶ :
containing the features of

index smaller than � .

From the well known property that if É
and Ê are jointly independent of Ë then�3�4ÉÌ% Ê"h ËÍ! . ����ÉÌ%+Êx! it follows that the quantity�· ��� � ¸P¹Îº � · ��� � ¸P¹Îº: � � Å ���F� � � Ç¶ : A � h ¶ � %(')')'(%�¶ : � � !GX����F� � � Ç¶ : A � ! È
is a measure of the average redundancy between the feature
subsets ¶ :

. � is �RX T«ª�¬*�® > k¯�°K± � ª if this average redun-
dancy is non-informative with respect to the class label.
Note that unlike (4), � -decomposability does not impose
any constraints on the dependencies between features that
belong to the same subset. The following proposition
shows that when arbitrary dependencies of order � are
allowed, the optimal infomax FS solution only requires
density estimates on subspaces of dimension �Ï�0� .

Proposition 1 Let � V .Ð�F� V� %(')')'(%P� V� ! be the optimal
feature subset of size � , in the infomax sense. If � V

is� -decomposable into the set ´µ.?#c¶ � %)'(')')%�¶n· �r¸ ¹»º , then

�3�4� V � �x!Ñ. �8��� � �3�4� V� � �1! (7)

X �8����� · ��� � ¸ ¹»º8 : � � ] ���F� V� � Ç¶ : A � !rX[�3��� V� � Ç¶ : A � h �x!Ii
where Ç¶ : A � is the subset of ¶ :

containing the features of
index smaller than � .

Proof: see the appendix.

3.2. Algorithms
The order � therefore ties the computational complexity of
optimal FS to the subset cardinality required to achieve the
optimal solution, i.e. the one which accounts for all the fea-
ture dependences that are informative with respect to the
class label. This suggests the following family of algo-
rithms that gradually trade optimality for speed (as � de-
creases).

Algorithm 1 Given a set of � features �/.W�F� � %)'(')'*% �aÒ;! ,
the order � , the target number of features � , and denoting
the marginal diversity of � � , �3�4� � %+�x! , by ®"T � .

1. set � V .Ó¶ � .?#(� V� , where � V� �Ô� is the feature of
largest marginal diversity, set �a.=Ä , and Hr.?� .

2. foreach �5Õ Ö� � V
, compute ×(Õ .� · ��� � ¸ ¹»º� � � ���F�aÕ&� Ç¶ � A � !ØX����F�aÕ&� Ç¶ � A � h �o! .

3. let Ù V .Ó`kÚ+N7_a`cb Õ ®ÔT Õ Xn× Õ . If ��XÛ� is not a multiple
of � make ¶ : .9¶ :�Ü � Õ�Ý . Else, set HG.ÓH^�0� , and let¶ : .0� Õ�Ý . In both cases make � V . Ür: ¶ :

, �a.0�3�a� ,
and go to 2 if �6¿¥� .

4. return � V
.

The algorithms in this family belong to the class of for-
ward search FS methods [21]. At each step the best fea-
ture, in the sense of (7), that has not yet been selected is
identified and added to the selected set. If this contains a
feature subset with less than � features the new feature is
included in that subset. Otherwise, a new subset is cre-
ated. The feature selection cost ®"T ÕÌX|×(Õ favors features
that are discriminant (large ®ÔT Õ ) but penalizes features
that, when combined with those already in the selected set,
are highly informative about the class label � (large ×�Õ ).
The overall complexity is determined by the loop in step
4. If there are Ë classes, Þ feature vectors per class, and
all densities are estimated with histograms of ± bins along
each axis, this involves, for the HQ��� subset ¶ :

, 1) estimat-
ing the joint histogram between � Õ and the variables in¶ :

, for all classes - complexity ßà��ÞÍ�4ËÍ! - 2) using those
histograms to compute �3��� Õ ��¶ : h �o! - complexity ßà� ± ¹ ËÍ!
- and 3) their average to compute �3��� Õ ��¶ : ! - complexityßà� ± ¹ ËÍ! . The entire loop has complexity ßà]v��Þ�� ± ¹ Ác�4! �;Ë�i
and, since it is repeated ��X�� times, the complexity of step
4 is ßà]M�4Þ-� ± ¹ Ák�4!P���F�ÛX0�;!PË�i . Summing from �Ó.� to� leads to an overall complexity of ßà] �7��Þ?� ± ¹ Ác�2!Q� � Ë�i .
Since � is usually small it follows that the complexity is
determined by the number of bins ± and the order � .
4. Experimental results
In this section we report on a collection of experiments de-
signed to evaluate various properties of ITFS. In particu-
lar, we considered four questions of practical significance:
1) is there a noticeable gain, in terms of probability of er-
ror, associated with modeling feature redundancies, 2) does
that gain justify the computational cost inherent to higher
dimensional density estimation, 3) what dependency order
achieves the optimal trade-off between recognition accu-
racy and complexity, and 4) how does the recognition per-
formance compare with standard variance-based methods,
such as PCA, that address redundancy reduction but are
not necessarily discriminant? The experiments were con-
ducted on both the Brodatz (112 classes, 1008 images) and
the Corel (15 classes, 1500 images) image databases, us-
ing a set up identical to that reported in some of our pre-
vious work (e.g. see [23]). In a nutshell, the database is
divided into a training and test set (roughly á$â to Ä&â«ã ),
the training set used for all the learning and the test set
for evaluation. This consists of using the training images
as a database, the test images as queries, evaluating the re-
trieval precision and recall (PR) for each query, and averag-
ing over all queries. To measure the dependence of retrieval
accuracy on the number of selected features, the average PR
curve was summarized by its integral, the PR area (PRA). In
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Figure 1: Left: PRA curves for the DCT feature set in Corel using ITFS algorithms of order
�

(’*’), ä (’x’), and å (’+’), and energy compaction (solid
line). Right: variation of the PRA curve with the number of histogram bins æ .
all experiments feature vectors were extracted from randomáÔç[á image neighborhoods and all classification/retrieval
results obtained with classifiers based on Gaussian mix-
tures. Various feature transformations were considered: the
discrete cosine transform (DCT), a wavelet representation
(WAV), principal component analysis (PCA), and indepen-
dent component analysis (ICA). Figure 1 (left) presents the
PRA curves obtained on Corel with the DCT features (sim-
ilar results obtained with the remaining transformations as
well as on Brodatz are omitted for brevity) for �G��#�âÏ%)�$%+Äu,
( �Y.	â corresponding to the maximization of the marginal
diversity as given by (5)). These curves are compared to
that obtained with the same features and the energy com-
paction criteria. It is visible that ��èj� -order decomposabil-
ity is sufficient to guarantee very substantial improvements
over energy compaction. For example, in the DCT case,
it takes energy compaction é$â features to reach the accu-
racy that ITFS achieves with only 10! In fact, even the
simple maximization of marginal diversity compares well
to energy compaction, achieving higher accuracy when the
number of selected features is small, the situation of great-
est practical interest. Finally, the assumption of Ä Ò&ê order
decomposability does not lead to any increase in PRA over
that of ��èI� order. This suggests that all the feature depen-
dencies that matter for recognition are those of first order,
a significant result given the exponential dependence of the
computational complexity on � .

To further analyze the dependence of recognition ac-
curacy on computational complexity, we repeated all ex-
periments for different numbers of histogram bins ± . Fig-
ure 1 (right) presents the resulting PRA curves when �R.?� .
Clearly, no noticeable changes happen above ± .ëá bins,
and the PRA is very close to the best even when ± .ìé . This
indicates that the performance of the ITFS algorithms is

quite insensitive to the number of histogram bins and coarse
histograms are sufficient to guarantee good retrieval results.
When combined with the left plot this result shows that
ITFS enables significant improvements over energy com-
paction at the expense of a small increase in complexity.
Overall, the best trade-off between accuracy and complex-
ity is achieved by the ITFS algorithm with �Ã.í� . Vi-
sual inspection of the recognition results shows a significant
improvement for queries from classes that have visual at-
tributes in common with other classes in the database. Since
features of large variance are not necessarily discriminant
they lead to confusion between such classes, as is illustrated
by the left column of Figure 2. For example, in the query
displayed in the top row, images from the flower class are
confused with images from the horses class, because the
backgrounds are similar in the two classes. The picture on
the right column shows that, when the discriminant ITFS
features are used, the retrieval precision increases signifi-
cantly. Similar results are presented in the subsequent rows
for queries involving various other overlapping class pairs,
namely fireworks vs stained glass, coasts vs scuba diving
scenes, ski scenes vs glaciers and mountains, and monu-
ments vs oil paintings. In general, we have observed that in
queries for images from classes that have significant over-
lap with other classes in the database (i.e. the most difficult
queries) ITFS leads to significantly higher retrieval accu-
racy than the variance-based criteria.
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A. Proof of Proposition 1
Proof: By recursive application of the chain rule of mutual
information�3��� V� �+� V� A ��� � h �o!7.0���F� V� ��¶ � %)'(')'*% Ç¶µ· ��� � ¸P¹Îº A � h �1!. �3��� V� � Ç¶n· ��� � ¸ ¹»º A � h ¶ � %(')')')%�¶n· ��� � ¸ ¹»º�� � %+�x!���3��� V� ��¶ � %)'(')'(%�¶n· ��� � ¸ ¹»º�� � h �1!

. · ��� � ¸ ¹»º8 : � � ���F� V� � Ç¶ : A � h ¶ � %)')'(')%�¶ : � � % �o!�'
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and, similarly,

�3��� V� �+� V� A ��� � !7. · ��� � ¸ ¹»º8 : � � �3��� V� � Ç¶ : A � h ¶ � %(')'(')%�¶ : � � !
It follows from (3) that

�3�4� V � �x!7. �8��� � ����� V� � �o! � (8)

� �8�����5ïð · ��� � ¸ ¹»º8 : � � ���F� V� � Ç¶ : A � h ¶ � %)'(')')%�¶ : � � % �o! (9)

X · ��� � ¸ ¹»º8 : � � ���F� V� � Ç¶ : A � h ¶ � %)'(')')%�¶ : � � !2ñò
and, rewriting (6) as� · ��� � ¸ ¹»º: � � Å ���F� � � Ç¶ : A � h ¶ � %(')')'(%�¶ : � � !X¥���F� � � Ç¶ : A � h ¶ � %)'(')'(%�¶ : � � %+�x! È .� · ��� � ¸ ¹»º: � � Å ���F� � � Ç¶ : A � !ØX[���F� � � Ç¶ : A � h �x! È %
(7) follows from the fact that � V

is � -decomposable into´Ô.�#k¶ � %)'(')')%�¶n· �r¸ ¹»º , .
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