Scalable Discriminant Feature Selection for Image Retrieval and Recognition

Nuno Vasconcelos

ECE Department

Manuela Vasconcelos

Division of Engineering and Applied Sciences

University of California, San Diego Harvard University

Introduction

vision defines large scale-classification problems

- large # of classes, large amounts of data per class
- discriminant feature space is a pre-requisite for success
- features are usually chosen according to intuitive, but not provably optimal/discriminant, justifications:
 - biological plausibility: Gabor, wavelet, multiresolution
 - optimality under non-classification criteria: PCA, ICA
 - perceptual relevance: edginess, color, etc.

classification-optimal methods (search, boosting, etc)

- do not scale well in the # of classes
- little insight on what are the constraints for "good features"
- large training complexity

Goals

- practical: classification-optimal FS algorithms that scale
- ► theoretical: the roles of discrimination and dependence
 - discriminant feature is a great asset
 - 2nd highly discriminant that does not add much info about class label (e.g. equal to 1st) is highly undesirable
 - good features balance max discrimination with min dependence

this trade-off is not well understood

- some solutions disregard dependencies (e.g. naïve Bayes, FS based on marginal distributions)
- others disregard discrimination (e.g. ICA, PCA, variance-based FS methods)
- many are "black box" solutions (e.g. boosting, forward search, ...)

Optimal discrimination/dependence trade-off

naturally formalized by information theory

- well known relationships between independence and information
- not-so-well known between information and discrimination
- given feature space \mathcal{X} and set $Y = \{1, \ldots, M\}$ of classes, classifier is map $g^* : \mathcal{X} \to Y$ such

$$g^* = \arg\min_q P(g(\mathbf{x}) \neq y), \forall \mathbf{x}, y.$$

error lower bounded by Bayes error (BE)

$$L^* = 1 - E_{\mathbf{x}}[\max_{i} P(y = i | \mathbf{x})]$$

- BE depends only on the feature space, not classifier
- Feature selection as the search for the BE-optimal space

Infomax principle (Linsker, Kullback)

▶ classification: *M*-ary problem with observations $Z \in Z$, best feature transformation is

$$T^* = \arg\max_T I(Y; \mathbf{X})$$

where

$$I(Y; \mathbf{X}) = \sum_{i} \int p_{\mathbf{X}, Y}(\mathbf{x}, i) \log \frac{p_{\mathbf{X}, Y}(\mathbf{x}, i)}{p_{\mathbf{X}}(\mathbf{x}) p_{Y}(i)} d\mathbf{x}$$

is the mutual information between $\mathbf{X} = T(\mathbf{Z})$ and the class label Y.

▶ since $I(\mathbf{X}; Y) = H(Y) - H(Y|\mathbf{X})$, this is the same as **minimizing** the class-posterior entropy (CPE)

$$T^* = \arg\min_T H(Y|\mathbf{X})$$

Properties of Infomax (NIPS'02, CVPR'03)

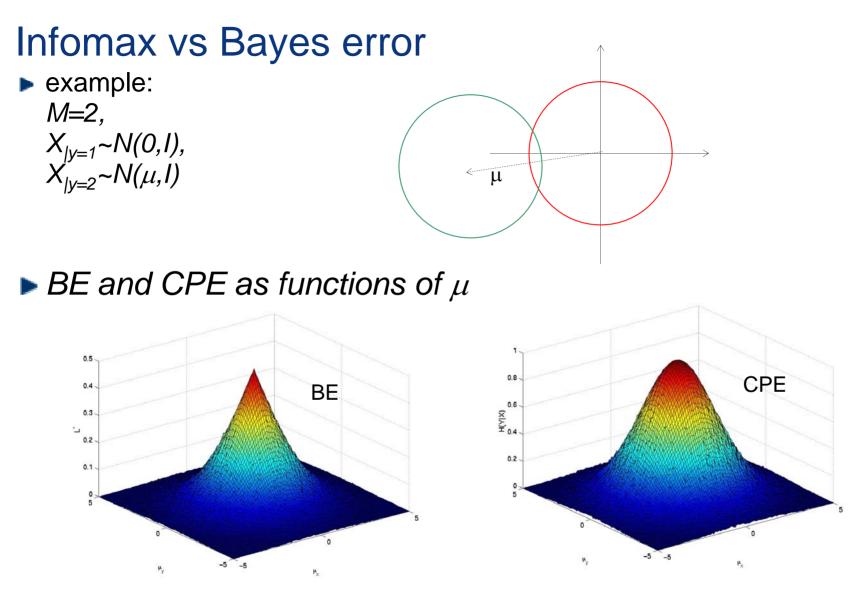
► discriminant: letting $\langle f(i) \rangle_Y = \sum_i P_Y(i) f(i)$, $T^* = \arg \max_T \langle KL \left[P_{\mathbf{X}|Y}(\mathbf{x}|i) || P_{\mathbf{X}}(\mathbf{x}) \right] \rangle_V$

where $KL[p||q] = \int p(\mathbf{x}) \log[p(\mathbf{x})/q(\mathbf{x})] d\mathbf{x}$.

it is possible to establish connection to Bayes error
 Theorem: for and *M*-class problem and feature space X

$$L_{\mathcal{X}}^* \ge \frac{1}{\log M} H(Y|\mathbf{X}) - \log \frac{2M - 1}{\log M} + 1$$

- Infomax minimizes a lower bound on BE!
- bound is tight for most problems of interest



Infomax: natural formalism to analyze trade-off between discriminantion and dependencies **Discrimination vs independence**

▶ if Z is *n*-dimensional and $X^* = (X_1^*, ..., X_N^*)$ the optimal feature subset of size *N*, then

$$I(\mathbf{X}^{*}, Y) = \sum_{k=1}^{N} I(X_{k}^{*}, Y) \qquad A$$

$$- \sum_{k=2}^{N} [I(X_{k}^{*}; \mathbf{X}_{1,k-1}^{*}) - I(X_{k}^{*}; \mathbf{X}_{1,k-1}^{*}|Y)].$$
where $\mathbf{X}^{*} = \{X^{*} \in X^{*}\}$

where
$$\mathbf{X}_{1,k-1}^* = \{X_1^*, \dots, X_{k-1}^*\}.$$

A measures individual discriminant power of each feature B penalizes combinations that are highly informative of class label (zero when X_k and X^{*}_{1,k-1} jointly indep of Y)

Interesting corollary

▶ if

$$\frac{1}{N-1}\sum_{k=2}^{N}I(X_{k}^{*};\mathbf{X}_{1,k-1}^{*}) = \frac{1}{N-1}\sum_{k=2}^{N}I(X_{k}^{*};\mathbf{X}_{1,k-1}^{*}|Y),$$
 then

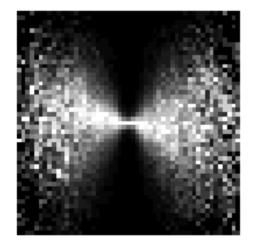
$$I(\mathbf{X}^*, Y) = \sum_{k=1}^{N} I(X_k^*, Y).$$
 (1)

i.e. all redundancy that does not carry information about class label can be ignored

independent modeling of highly correlated features not necessarily sub-optimal!

Image statistics

Interesting condition: various studies reporting consistent patterns of dependence for features of biologically plausible transforms (Simoncelli et al, Mumford et al, etc.)



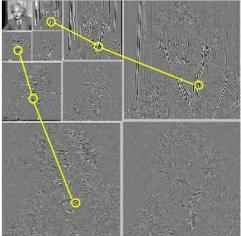
- although the fine details of dependence vary from class to class, the coarse structure of dependence patterns is similar for most image classes
- conjecture: maximization of marginal diversity is close to optimal for visual recognition
- direct verification requires high-dimensional density estimates, problematic. We follow alternative path.

Measuring the impact of dependencies

- strategy: sequentially relax assumption that feature dependencies are not informative about class label
 - feature set grouped into exclusive subsets of Ith order
 - features within subsets arbitrarily dependent, no constraints
 - dependence between subsets not informative about image class
- extend (1) for each dependency order and obtain associated optimal algorithm
- interesting in two ways
 - by measuring error rate we can determine order at which dependencies do become non-informative
 - if this order is small we have an optimal FS algorithm of reduced complexity

Why should this work?

- while (1) may be too restrictive, assumption should hold for some order < full space dimension</p>
- if the assumption of non-informative dependences holds at order *I*, we have *I-decomposability*
- e.g. dependencies between wavelet coefficients well known to be localized in both space and image scale
 - co-located coefficients of equal orientation can be arbitrarily dependent on the class



- average dependence between such sets of coefficients does not depend on the image class (strong vertical frequencies <> weak horizontal frequencies)
- even if it does not, resulting family of algorithms allows continuous trade-off between complexity and optimality

I-decomposability

• **Definition:** $\mathbf{X} = (X_1, \dots, X_N)$ is *l*-decomposable if there \exists mutually exclusive subsets $C = {\mathbf{C}_1, \dots, \mathbf{C}_{\lceil N/l \rceil}}$

$$\mathbf{C}_{i} = \begin{cases} \{X_{(i-1)l+1}, \dots, X_{il}\}, & \text{if } i < \lceil N/l \rceil, \\ \{X_{(i-1)l+1}, \dots, X_{N}\}, & \text{if } i = \lceil N/l \rceil \end{cases}$$

and, for all $k \in \{2, \dots, N\}$,

$$\sum_{i=1}^{\lceil k-1/l \rceil} \left[I(X_k; \tilde{\mathbf{C}}_{i,k} | \mathbf{C}_1, \dots, \mathbf{C}_{i-1}) - I(X_k; \tilde{\mathbf{C}}_{i,k}) \right] = \sum_{i=1}^{\lceil k-1/l \rceil} \left[I(X_k; \tilde{\mathbf{C}}_{i,k} | \mathbf{C}_1, \dots, \mathbf{C}_{i-1}, Y) - I(X_k; \tilde{\mathbf{C}}_{i,k} | Y) \right]$$

where $ilde{\mathbf{C}}_{i,k} = \{\mathbf{x}_j | \mathbf{x}_j \in \mathbf{C}_i, j < k\}.$

• for example, when N=12, I = 4, k=11 C_1 C_2 C_2 $C_3,11$ C_1 C_2 $C_3,11$ $C_3,11$ C_2 $C_3,11$ $C_$

I-decomposability

From (A, B) jointly independent of $C \Leftrightarrow I(A, B|C) = I(A, B)$ it follows that

$$\frac{1}{[k-1/l]} \sum_{i=1}^{\lceil k-1/l \rceil} \left[I(X_k; \tilde{\mathbf{C}}_{i,k} | \mathbf{C}_1, \dots, \mathbf{C}_{i-1}) - I(X_k; \tilde{\mathbf{C}}_{i,k}) \right]$$

measures average redundancy between C_i .

- X I-decomposable if this average redundancy is noninformative about the class label
- note that *I*-decomposability does not impose constraints on dependencies within the subsets C_i
- next we see that when arbitrary dependencies of order / are allowed, the optimal infomax solution only requires density estimates on subspaces of dimension /+1

Properties of I-decomposability

▶ Theorem: Let $\mathbf{X}^* = (X_1^*, \dots, X_N^*)$ be the infomaxoptimal set of size N. If \mathbf{X}^* is *l*-decomposable into $C = \{\mathbf{C}_1, \dots, \mathbf{C}_{\lceil N/l \rceil}\}$ then

$$I(\mathbf{X}^{*};Y) = \sum_{k=1}^{N} I(\mathbf{X}_{k}^{*};Y)$$
(1)
-
$$\sum_{k=2}^{N} \sum_{i=1}^{\lceil k-1/l \rceil} [I(X_{k}^{*};\tilde{\mathbf{C}}_{i,k}) - I(X_{k}^{*};\tilde{\mathbf{C}}_{i,k}|Y)]$$

where $\tilde{\mathbf{C}}_{i,k} = {\mathbf{x}_j | \mathbf{x}_j \in \mathbf{C}_i, j < k}.$

this suggests a family of FS algorithms, parameterized by *I*, that trades optimality for complexity

A family of algorithms

natural extension to traditional FS by sequential search

- start from optimal set of cardinality 1
- sequentially add feature that most increases the cost
- discriminant cost for selecting "next best" feature

$$C_r = I(X_r; Y) + \sum_{i=1}^{\lfloor k-1/l \rfloor} I(X_r; C_{i,k} \mid Y) - I(X_r; C_{i,k})]$$

- O: favors features that are discriminant (large $I(X_r; Y)$)
- O: penalizes features redundant with previously selected ($I(X_r; C_{i,k})$)
- O: unless redundancy provides information about Y ($I(X_r; C_{i,k}|Y)$).

Feature selection algorithm

- ▶ Algorithm 1 Given a set of n features $\mathbf{X} = (X_1, ..., X_n)$, the order l, the target number of features N, and denoting the marginal diversity of X_k , $I(\mathbf{X}_k, Y)$, by md_k .
 - 1. set $X^* = C_1 = \{X_1^*\}$ where $X_1^* \in X$ is the feature of largest marginal diversity, set k = 2, and i = 1.
 - 2. foreach $X_r \notin \mathbf{X}^*$, compute $\delta_r = \sum_{p=1}^{\lceil k-1/l \rceil} I(X_r; \tilde{\mathbf{C}}_{p,k}|Y) I(X_r; \tilde{\mathbf{C}}_{p,k})$.
 - 3. let $r^* = \arg \max_r md_r + \delta_r$. If k-1 is not a multiple of l make $C_i = C_i \cup X_{r^*}$. Else, set i = i + 1, and let $C_i = X_{r^*}$. In both cases make $X^* = \bigcup_i C_i$, k = k + 1, and go to 2 if k < N.
- what I is needed to capture all significant dependencies?

Experimental set-up

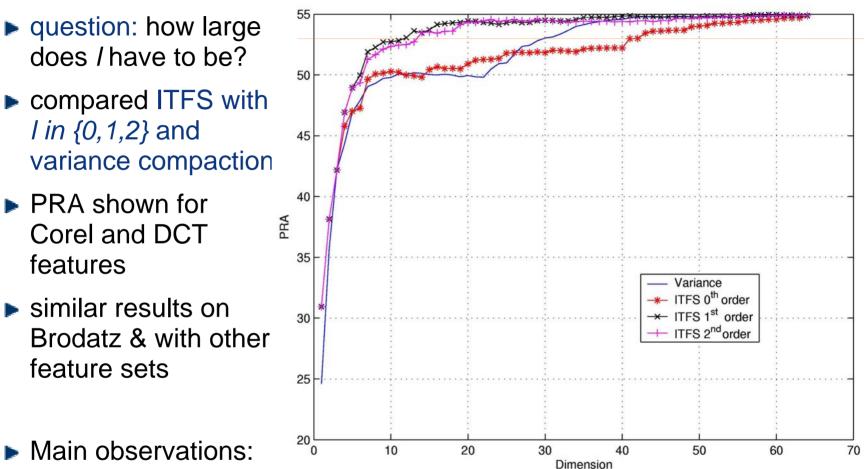
Two databases

- Brodatz: texture, 112 classes, 1008 images
- Corel: natural images, 15 classes, 1500 images
- recognition: 20% testing, 80% training
 - training images as DB, test images as queries
 - precision/recall measured for each query, averaged over all queries
 - PR curve summarized by its integral PR Area (PRA)
 - 8x8 image neighborhoods, GMM classifier
 - various feature transforms: DCT, wavelet, PCA, and ICA

Evaluation: PRA vs number of selected features

Results

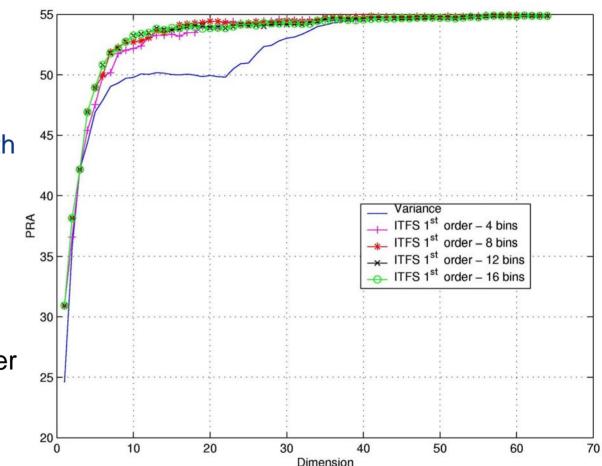
- question: how large does / have to be?
- compared ITFS with *l in {0,1,2}* and variance compaction
- PRA shown for Corel and DCT features
- similar results on Brodatz & with other feature sets



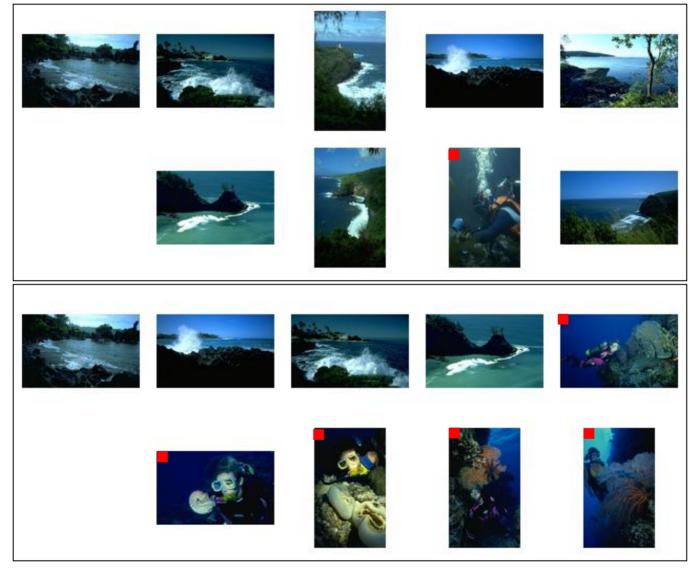
- ITFS can significantly outperform variance-based methods (10 vs 30 features for equivalent PRA)
- for ITFS there is no noticeable gain for l > 1!

Results

- question: how accurate do the density estimates have to be?
- compared ITFS with
 I =1 and various
 histogram sizes
- PRA shown for Corel and DCT features
- similar results on Brodatz & with other feature sets



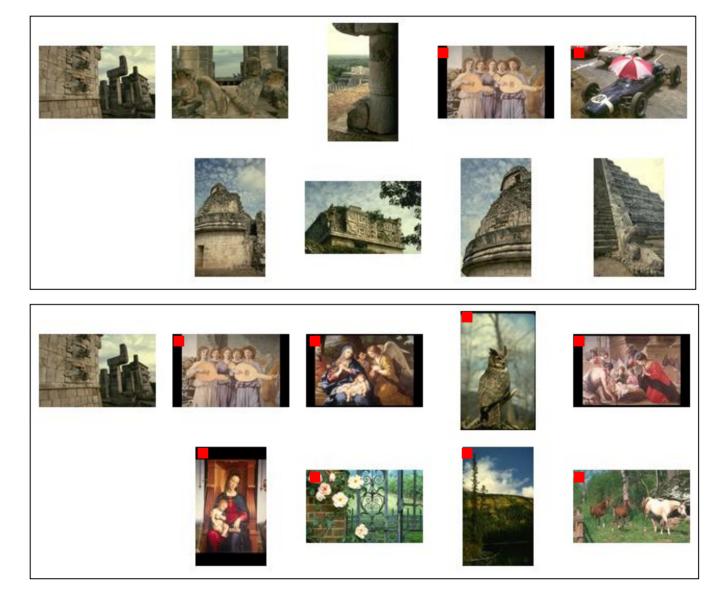
- Main observations:
 - ITFS is quite insensitive to the quality of the estimates (no noticeable variation above 8 bins per axis, small degradation for 4)
 - always significantly better than variance



ITFS: *(l=1)*







Conclusions

- Feature selection: search for the Bayes error-optimal space of a given classification problem
- relationships between BE and infomax, make latter natural formalism to understand trade-off between dependence and discrimination
- introduced the concept of *I*-decomposability
- family of FS algorithms that trade-off infomax optimality for complexity
- second-order dependencies seem to be sufficient to achieve near-optimal performance
- optimal/discriminant FS with reduced complexity