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Classification architectures for vision

modern learning theory favors discriminant over 
generative architectures for classification

for vision, a fundamental difference is the set of 
constraints imposed on the representation
• discriminant classifiers favor holistic representations (image as a 

point in high-dimensional space)

• generative classifiers favor localized representations (images as 
bags of local features)

localized representations have various advantages 
• more invariant

• more robust to occlusion

• lower dimensionality
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Classification architectures for vision

also, despite weaker guarantees, generative 
architectures have great practical appeal
• better scalability in number of classes

• encoding of prior knowledge in the form of statistical models

• modular solutions, using Bayesian inference

Q: can all this be combined with discriminant
guarantees?

we consider SVMs, and the Kullback-Leibler kernel

investigate its ability to seamlessly combine discriminant
recognition with generative models based on localized 
representations 
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Support vector machines
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Kernels 
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Constraints on representation

two possible image representations
• holistic: � the space of all images, each image is a point in �

• localized: image broken into local windows, � the space of such 
windows

SVM training is O(N2), N = number of examples 

holistic: N = I, dim(�) large (e.g. 5,000)

localized: N = k x I, I = # images
k = windows/image, k large (e.g. 5,000)
dim(�) small (e.g. 8x8)

complexity of localized ~ k2 times that of holistic (e.g. 2.5 
x107 increase)

no way to capture grouping of windows into images
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Constraints on representation

localized not suited for traditional SVM

holistic has been successful, but has limitations

resolution:
• images too high-dimensional, drastically down-sampled (e.g. from 

240x360 to 20x20)

• discarded information important for fine classification (near 
boundary)

invariance:
• images as points span quite convoluted manifolds in X, when 

subject to transformations 

occlusion:
• a few occluded pixels can lead to a very large jump in X
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Localized representations

resolution is no issue (simply more points per image)

greater robustness to invariance, e.g.

greater robustness to occlusion
• X% occluded pixels, means that x% of the probability mass 

changes

• the remaining (1-x)% should still be enough to obtain a good 
match

• when x% of a vector components change, matching is hard
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Probabilistic kernels

since 
• kernel captures similarities between examples

• bags of localized examples best described by their prob. density

natural to make the kernel function a measure of distance 
between probability density functions

various kernels proposed in the literature
• Fischer Kernel (Jaakkola et al, 1999), 

• TOP kernel (Tsuda et al, 2002), 

• diffusion kernels (Lafferty and Lebanon, 2002) ,

• generalized correlation kernel (Kondor, Jebara, 2003), 

• KL-kernel (Moreno et al, 2003)
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Probabilistic kernels

three main advantages over holistic kernels
• enable representations of variable length

• enable a compact representation of a large sequence of vectors 
(through pdf)

• can exploit prior knowledge about the classification problem 
(selection of suitable probability models)

interpretation of the standard Gaussian kernel as 

where d is the Euclidean distance

suggests a natural extension based on pdf distances

this leads to the KL kernel
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The KL kernel

relies on the (symmetric) Kullback-Leibler divergence as 
the measure of pdf distance
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A kernel taxonomy

probabilistic kernels allow a great deal of flexibility over 
traditional counterparts
KL kernel can be tuned to the problem in terms of:
1. performance: choice of probability models that match the 

statistics of the data
2. computation: using approximations to the KL that have been 

shown to work well in certain domains
3. joint design of features and kernel

here we focus on 1 and 2, stay tuned for 3
it is possible to develop a taxonomy of kernels that 
implement various trade-offs between performance and 
computation
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Parametric densities

are good models or approximations for various problems

the kernel can be tailored to the particular pdf family
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The Gaussian

is a particularly popular case

in general, it is possible to derive the kernel function for 
the parametric cases
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Non-parametric densities

non-parametric density models can be a lot trickier

some have closed-form KL kernels, e.g. the histogram

extensions available for histograms defined on
different partitions (Vasconcelos, Trans. Info. Theory, 2004)
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Approximations

various are possible for kernels without closed form

in some cases, even this has no closed-form, e.g.
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Approximations and sampling

various specific approximations have been recently 
proposed for the Gauss mixture case
• log-sum bound (Singer and Warmuth, NIPS 98)

• asymptotic likelihood approximation (Vasconcelos, ICCV 2001, 
trans. IT, 2004)

• unscented transformation (Goldberger et al, ICCV 2004)

finally, one can always use Monte Carlo sampling
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Experiments

all on COIL-100, three resolutions: 32x32, 64x64, 128x128

4 different combinations of train/test:
• I images of each object used as training set, I in {4, 8,18,36}

• remaining used for test

• dataset with I = n referred to as �n

holistic representation:
• each image one vector

localized representation:
• image as feature bag: extract 8x8 windows, compute DCT, keep 

32 first features

• mixture of 16 Gaussians fit to each image
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COIL-100

100 objects subject to 3D rotation

one view every 5o
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Results

holistic: SVM with three different kernels
• linear (L-SVM), polynomial order 2 (P2-SVM), Gaussian (G-SVM)

localized:
• standard maximum-likelihood Gauss mixture classifier

• KL kernel with Gauss mixture models (KL-SVM)

recognition rates (%)
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Results

�4 �8
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Results

�18 �36
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Observations
holistic kernels: G-SVM clearly better
• excellent when n is large, but drops quickly

• for small n weaker than GMM!

overall:
• localized + discriminant (KL-SVM) is best

• differences between KL-SVM and G-SVM as high as 10%

• localized + weak (GMM) learner better than holistic + strong (G-SVM)

conclusions: 
• localized is more invariant, leads to easier classification problem: 

weaker classifier (GMM) has better generalization!

• resolution (higher dimensionality vs more image info):
• losses of about 5% at lower resolution
• KL-SVM much more robust than GMM
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Flexibility

discriminant attributes for recognition depend on task
(e.g. shape better for digits, texture better for landscapes)

KL kernel supports multiple representations

comparison of representations based on
• support: point-wise vs local appearance vs global appearance

• color: grayscale vs color

all experiments on �4, 128x128, compared
• point-wise:KL-kernel (�2)+ histogram (16 bins/channel)

histogram intersection (Laplacian kernel, Chapelle et
al, trans. Neural Nets, 1999)

• local: KL-kernel with GMM (8x8 windows)

• global: G-SVM
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Results

color important cue for recognition on COIL

the less localized the better: point-wise > local >> global

localization/invariance trade-off:
• color so discriminant that even invariance loss of 8x8 is too much

• loss of holistic is so large that it performs quite poorly

• on grayscale (less discriminant) localized does best

conclusion: different representations perform best on 
different tasks, flexibility of KL-kernel is a great asset


