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Abstract

Saliency mechanisms play an important role when visual recognition
must be performed in cluttered scenes. We propose a computational defi-
nition of saliency that deviates from existing models by equating saliency
to discrimination. In particular, the salient attributes of a given visual
class are defined as the features that enable best discrimination between
that class and all other classes of recognition interest. It is shown that
this definition leads to saliency algorithms of low complexity, that are
scalable to large recognition problems, and is compatible with existing
models of early biological vision. Experimental results demonstrating
success in the context of challenging recognition problems are also pre-
sented.

1 Introduction
The formulation of recognition as a problem of statistical classification has enabled sig-
nificant progress in the area, over the last decades. In fact, for certain types of problems
(face detection/recognition, vehicle detection, pedestrian detection, etc.) it now appears to
be possible to design classifiers that “work reasonably well most of the time”, i.e. clas-
sifiers that achieve high recognition rates in the absence of a few factors that stress their
robustness (e.g. large geometric transformations, severe variations of lighting, etc.). Recent
advances have also shown that real-time recognition is possible on low-end hardware [1].
Given all this progress, it appears that one of the fundamental barriers remaining in the path
to a vision of scalable recognition systems, capable of dealing with large numbers of visual
classes, is an issue that has not traditionally been considered as problematic: training com-
plexity. In this context, an aspect of particular concern is the dependence, of most modern
classifiers, on carefully assembled and pre-processed training sets. Typically these training
sets are large (in the order of thousands of examples per class) and require a combination of
1) painstaking manual labor of image inspection and segmentation of good examples (e.g.
faces) and 2) an iterative process where an initial classifier is applied to a large dataset of
unlabeled data, the classification results are manually inspected to detect more good exam-
ples (usually examples close to the classification boundary, or where the classifier fails),
and these good examples are then manually segmented and added to the training set.

Overall, the process is extremely laborious, and good training sets usually take years to
establish through the collaborative efforts of various research groups. This is completely
opposite to what happens in truly scalable learning systems (namely biological ones) that
are able to quickly bootstrap the learning process from a small number of virtually un-
processed examples. For example while humans can bootstrap learning with weak clues
and highly cluttered scenes (such as “Mr. X is the person sitting at the end of the room,
the one with gray hair”), current faces detectors require training faces to be cropped into
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Figure 1: (a)(b)(c) Various challenging examples for current saliency detectors. (a) Apple hanging
from a tree; (b) a bird in a tree; (c) an egg in a nest. (d) some DCT basis functions. From left to right,
top to bottom, detectors of: edges, bars, corners, t-junctions, spots, flow patches, and checkerbords.

20 × 20 pixel arrays, with all the hair precisely cropped out, lighting gradients explicitly
removed, and so on. One property of biological vision that plays an important role in this
ability to learn from highly cluttered examples, is the existence of saliency mechanisms.
For example, humans rarely have to exhaustively scan a scene to detect an object of inter-
est. Instead, salient locations simply pop-out in result of the operation of pre-recognition
saliency mechanisms. While saliency has been the subject of significant study in computer
vision, most formulations do not pose saliency itself as a major goal of recognition. Instead
saliency is usually an auxiliary pre-filtering step, whose goal is to reduce computation by
eliminating image locations that can be universally classified as non-salient, according to
some definition of saliency which is completely divorced from the particular recognition
problem at hand.

In this work, we propose an alternative definition of saliency, which we denote by discrim-
inant saliency, and which is intrinsically grounded on the recognition problem. This new
formulation is based on the intuition that, for recognition, the salient features of a visual
class are those that best distinguish it from all other visual classes of recognition interest.
We show that 1) this intuition translates naturally into a computational principle for the
design of saliency detectors, 2) this principle can be implemented with great computational
simplicity, 3) it is possible to derive implementations which scale to recognition problems
with large numbers of classes, and 4) the resulting saliency mechanisms are compatible
with classical models of biological perception. We present experimental results demon-
strating success on image databases containing complex scenes and substantial amounts of
clutter.

2 Saliency detection
The extraction of salient points from images has been a subject of research for at least a
few decades. Broadly speaking, saliency detectors can be divided into three major classes.
The first, and most popular, treats the problem as one of the detection of specific visual
attributes. These are usually edges or corners (also called “interest points”) [2] and their
detection has roots in the structure-from-motion literature, but there have also been propos-
als for other low-level visual attributes such as contours [3]. A major limitation of these
saliency detectors is that they do not generalize well. For example, a corner detector will
always produce a stronger response in a region that is strongly textured than in a smooth
region, even though textured surfaces are not necessarily more salient than smooth ones.
This is illustrated by the image of Figure 1(a). While a corner detector would respond
strongly to the highly textured regions of leaves and tree branches, it is not clear that these
are more salient than the smooth apple. We would argue for the contrary.

Some of these limitations are addressed by more recent, and generic, formulations of
saliency. One idea that has recently gained some popularity is to define saliency as image
complexity. Various complexity measures have been proposed in this context. Lowe [4]
measures complexity by computing the intensity variation in an image using the difference
of Gaussian function; Sebe [5] measures the absolute value of the coefficients of a wavelet
decomposition of the image; and Kadir [6] relies on the entropy of the distribution of local



intensities. The main advantage of these data-driven definitions of saliency is a signifi-
cantly greater flexibility, as they could detect any of the low-level attributes above (corners,
contours, smooth edges, etc.) depending on the image under consideration. It is not clear,
however, that saliency can always be equated with complexity. For example, Figures 1(b)
and (c), show images containing complex regions, consisting of clustered leaves and straw,
that are not terribly salient. On the contrary, the much less complex image regions contain-
ing the bird or the egg appear to be significantly more salient.

Finally, a third formulation is to start from models of biological vision, and derive saliency
detection algorithms from these models [7]. This formulation has the appeal of its roots on
what are the only known full-functioning vision systems, and it has been shown to lead to
interesting saliency behavior [7]. However, these solutions have one significant limitation:
the lack of a clearly stated optimality criteria for saliency. In the absence of such a criteria
it is difficult to evaluate, in an objective sense, the goodness of the proposed algorithms or
to develop a theory (and algorithms) for optimal saliency.

3 Discriminant saliency
The basic intuition for discriminant saliency is somewhat of a “statement of the obvious”:
the salient attributes of a given visual concept are the attributes that most distinguish it
from all other visual concepts that may be of possible interest. While close to obvious, this
definition is a major departure from all existing definitions in the vision literature.

First, it makes reference to a “set of visual concepts of possible interest”. While such a
set may not be well defined for all vision problem (e.g. tracking or structure-from-motion
where many of the current saliency detectors have roots [2]), it is an intrinsic component
of the recognition problem: the set of visual classes to be recognized. It therefore makes
saliency contingent upon the existence of a collection of classes and, therefore, impossible
to compute from an isolated image. It also means that, for a given object, different visual
attributes will be salient in different recognition contexts. For example while contours and
shape will be most salient to distinguish a red apple from a red car, color and texture will be
most salient when the same apple is compared to an orange. All these properties appear to
be a good idea for recognition. Second, it sets as a goal for saliency that of distinguishing
between classes. This implies that the optimality criterion for the design of salient features
is discrimination, and therefore very different from traditional criteria such as repetitiveness
under image transformations [8]. Robustness in terms of these criteria (which, once again,
are well justified for tracking but do not address the essence of the recognition problem)
can be learned if needed to achieve discriminant goals [9].

Due to this equivalence between saliency and discrimination, the principle of discriminant
saliency can be easily translated into an optimality criteria for the design of saliency al-
gorithms. In particular, it is naturally formulated as an optimal feature selection problem:
optimal features for saliency are the most discriminant features for the one-vs-all classifica-
tion problem that opposes the class of interest to all remaining classes. Or, in other words,
the most salient features are the ones that best separate the class of interest from all others.
Given the well known equivalence between features and image filters, this can also be seen
as a problem of designing optimal filters for discrimination.

3.1 Scalable feature selection
In the context of scalable recognition systems, the implementation of discriminant saliency
requires 1) the design of a large number of classifiers (as many as the total number of
classes to recognize) at set up time, and 2) classifier tuning whenever new classes are
added to, or deleted from, the problem. It is therefore important to adopt feature selec-
tion techniques that are computationally efficient, preferably reusing computation from the
design of one classifier to the next. The design of such feature selection methods is a
non-trivial problem, which we have been actively pursuing in the context of research in
feature selection itself [11]. This research has shown that information-theoretic methods,



based on maximization of mutual information between features and class labels, have the
appealing property of enabling a precise control (through factorizations based on known
statistical properties of images) over the trade off between optimality, in a minimum Bayes
error sense, and computationally efficiency [11]. Our experience of applying algorithms
in this family to the saliency detection problem is that, even those strongly biased towards
efficiency can consistently select good saliency detection filters. This is illustrated by all
the results presented in this paper, where we have adopted the maximization of marginal
diversity (MMD) [10] as the guiding principle for feature selection.

Given a classification problem with class labels Y , prior class probabilities PY (i), a set of
n features, X = (X1, . . . , Xn), and such that the probability density of Xk given class i is
PXk|Y (x|i), the marginal diversity (MD) of feature Xk is

md(Xk) =< KL[PXk|Y (x|i)||PXk
(x) >Y (1)

where < f(i) >Y =
∑M

i=1 PY (i)f(i), and KL[p||q] =
∫

p(s) log p(x)
q(x)dx the Kullback-

Leibler divergence between p and q. Since it only requires marginal density estimates,
the MD can be computed with histogram-based density estimates leading to an extremely
efficient algorithm for feature selection [10]. Furthermore, in the one-vs-all classification
scenario, the histogram of the “all” class can be obtained by a weighted average of the class
conditional histograms of the image classes that it contains, i.e.

PXk|Y (x|A) =
∑

i∈A
PXk|Y (x|i)PY (i) (2)

where A is the set of image classes that compose the “all” class. This implies that the
bulk of the computation, the density estimation step, only has to be performed once for the
design of all saliency detectors.

3.2 Biologically plausible models

Ever since Hubel and Wiesel’s showing that different groups in V1 are tuned for detecting
different types of stimulae (e.g. bars, edges, etc.) it has been known that, the earliest stages
of biological vision can be modeled as a multiresolution image decomposition followed by
some type of non-linearity. Indeed, various “biologically plausible” models of early vision
are based on this principle [12]. The equivalence between saliency detection and the de-
sign of optimally discriminant filters, makes discriminant saliency compatible with most
of these models. In fact, as detailed in the experimental section, our experience is that re-
markably simple mechanisms, inspired by biological vision, are sufficient to achieve good
saliency results. In particular, all the results reported in this paper were achieved with the
following two step procedure, based on the Malik-Perona model of texture perception [13].
First, a saliency map (i.e. a function describing the saliency at each pixel location) is ob-
tained by pooling the responses of the different saliency filters after half-wave rectification

S(x, y) =
2n∑

i=1

ωiR
2
i (x, y), (3)

where S(x, y) is the saliency at location (x, y), Ri(x, y), i = 1, . . . , 2n the channels result-
ing from half-wave rectification of the outputs of the saliency filters Fi(x, y), i = 1, . . . , n

R2k−1 = max[−I ∗ Fk(x, y), 0] R2k = max[I ∗ Fk(x, y), 0] (4)

I(x, y) the input image, and wi = md(i) a weight equal to the feature’s marginal diversity.
Second, the saliency map is fed to a peak detection module that consists of a winner-
take-all network. The location of largest saliency is first found. Its spatial scale is set
to the size of the region of support of the saliency filter with strongest response at that
location. All neighbors within a circle whose radius is this scale are then suppressed (set
to zero) and the process is iterated. The procedure is illustrated by Figure 2, and produces
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Figure 2: Schematic of the saliency detection model.

a list of salient locations, their saliency strengths, and scales. It is important to limit the
number of channels that contribute to the saliency map since, for any given class, there
are usually many features which are not discriminant but have strong response at various
image locations (e.g. areas of clutter). This is done through a cross-validation step that we
discuss in section 4.3.

All the experiments presented in the following section were obtained using the coefficients
of the discrete cosine transform (DCT) as features. While the precise set of features is likely
not to be crucial for the quality of the saliency results (e.g. other invertible multiresolution
decompositions, such as Gabor or other wavelets, would likely work well) the DCT feature
set has two appealing properties. First, previous experience has shown that they perform
quite well in large scale recognition problems [14]. Second, as illustrated by Figure 1(d),
the DCT basis functions contain detectors for various perceptually relevant low-level image
attributes, including edges, bars, corners, t-junctions, spots, etc. This can obviously only
make the saliency detection process easier.

4 Results and discussion

We start the experimental evaluation of discriminant saliency with some results from the
Brodatz texture database, that illustrate various interesting properties of the former.

4.1 Saliency maps

Brodatz is an interesting database because it stresses aspects of saliency that are quite prob-
lematic for most existing saliency detection algorithms: 1) the need to perform saliency
judgments in highly textured regions, 2) classes that contain salient regions of diverse
shapes, and 3) a great variety of salient attributes - e.g. corners, closed and open con-
tours, regular geometric geometric figures (circles, squares, etc.), texture gradients, crisp
and soft edges, etc. The entire collection of textures in the database was divided into a train
and test set, using the set-up of our previous retrieval work [14]. The training database was
used to determine the salient features of each class, and saliency maps were then computed
on the test images. The process was repeated for all texture classes, on a one-vs-all setting
(class of interest against all others) with each class sequentially considered as the “one”
class.

As illustrated by the examples shown in Figure 3, none of the challenges posed by Brodatz
seem very problematic for discriminant saliency. Note, in particular, that the latter does not
appear to have any difficulty in 1) ignoring highly textured background areas in favor of a
more salient foreground object (two leftmost images), which could itself be another texture,
2) detecting as salient a wide variety of shapes, contours of different crispness and scale,
or 3) even assign strong saliency to texture gradients (rightmost image). This robustness is
a consequence of the fact that the saliency features are tuned to discriminate the class of
interest from the rest. We next show that it can lead to significantly better saliency detection
performance than that achievable with the algorithms currently available in the literature.



Figure 3: Saliency maps (bottom row) obtained on various textures (shown in top row) from Brodatz.
Bright pixels flag salient locations. Note: the saliency maps of the second row are best viewed on
paper. A gamma-corrected version would be best for viewing on CRT displays and is available at
www.svcl.ucsd.edu/publications/nips04-crt.ps

Dataset DSD SSD HSD pixel-based constellation [15]
Faces 97.24 77.3 61.87 93.05 96.4

Motorbikes 96.25 81.3 74.83 87.83 92.5
Airplanes 93.00 78.7 80.17 90.33 90.2

Table 1: SVM classification accuracy based on different detectors.

4.2 Comparison to existing methods
While the results of the previous section provide interesting anecdotal evidence in sup-
port of discriminant saliency, objective conclusions can only be drawn by comparison to
existing techniques. Unfortunately, it is not always straightforward to classify saliency de-
tectors objectively by simple inspection of saliency maps, since different people frequently
attribute different degrees of saliency to a given image region. In fact, in the absence of a
larger objective for saliency, e.g. recognition, it is not even clear that the problem is well
defined. To avoid the obvious biases inherent to a subjective evaluation of saliency maps,
we tried to design an experiment that could lead to an objective comparison. The goal was
to quantify if the saliency maps produced by the different techniques contained enough
information for recognition. The rational is the following. If, when applied to an image, a
saliency detector has an output which is highly correlated with the appearance/absence of
the class of interest in that image, then it should be possible to classify the image (as be-
longing/not belonging to the class) by classifying the saliency map itself. We then built the
simplest possible saliency map classifier that we could conceive of: the intensity values of
the saliency map were histogrammed and fed to a support vector machine (SVM) classifier.

We compared the performance of the discriminant saliency detector (DSD) described
above, with one representative from each of the areas of the literature discussed in sec-
tion 2: the Harris saliency detector (HSD) and the scale saliency detector (SSD) of [6]. To
evaluate performance on a generic recognition scenario, we adopted the Caltech database,
using the experimental set up proposed in [15]. To obtain an idea of what would be ac-
ceptable classification results on this database, we used two benchmarks: the performance,
on the same classification task, of 1) a classifier of equivalent simplicity but applied to the
images themselves and 2) the constellation-based classifier proposed in [15] (which we be-
lieve to be representative of the state-of-the-art for this database). For the simple classifier,
we reduced the luminance component of each image to a vector (by stacking all pixels into
a column) and used a SVM to classify the resulting set of points. All parameters were set to
assure a fair comparison between the saliency detectors (e.g. a multiscale version of Harris
was employed, all detectors combined information from three scales, etc.). Table 1 presents
the two benchmarks and the results of classifying the saliency histograms generated by the
three detectors.

The table supports various interesting conclusions. First, both the HSD and the SSD have



Figure 4: Original images (top row), saliency maps generated by DSD (second row), and a
comparison of salient locations detected by: DSD in the third row, SSD in the fourth, and
HSD at the bottom. Salient locations are the centers of the white circles, the circle radii
representing scale. Note: the saliency maps of the second row are best viewed on paper.
A gamma-corrected version would be best for viewing in CRT displays and is available at
www.svcl.ucsd.edu/svclwww/publications/nips04-crt.ps

very poor performance, indicating that they produce saliency maps that have weak corre-
lation with the presence/absence of the class of interest in the image to classify. Second,
the simple pixel-based classifier works surprisingly well on this database, given that there
is indeed a substantial amount of clutter in its images (see Figure 4). Its performance is,
nevertheless, inferior to that of the constellation classifier. The third, and likely most sur-
prising, observation is that the classification of the DSD histograms clearly outperform this
classifier, achieving the overall best performance. It should be noted that this is somewhat
of an unfair comparison for the constellation classifier, since it tries to solve a problem that
is more difficult than the one considered in this experiment. While the question of inter-
est here is “is class x present in the image or not?” this classifier can actually determine
the location of the element from the class (e.g. a face) in the image. In any case, these
results seem to support the claim that DSD produces saliency maps which contain most of
the saliency information required for classification. The issue of translating these saliency
maps into a combined segmentation/recognition solution will be addressed in future re-
search.

Finally, the superiority of the DSD over the other two saliency detectors considered in this
experiment is also clearly supported by the inspection of the resulting salient locations.
Some examples are presented in Figure 4.

4.3 Determining the number of salient features
In addition to experimental validation of the performance of discriminant saliency, the ex-
periment of the previous section suggests a classification-optimal strategy to determine the
number of features that contribute to the saliency maps of a given class of interest. Note
that, while the training examples from each class are not carefully segmented (and can con-
tain large areas of clutter), the working assumption is that each image is labeled with respect
to the presence or absence in it of the class of interest. Hence, the classification problem
of the previous section is perfectly well defined before segmentation (e.g. separation of
the pixels containing objects in the class and pixels of background) takes place. It follows
that a natural way to determine the optimal number of features is to search for the number
that maximizes the classification rate on this problem. This search can be performed by
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Figure 5: Classification accuracy vs number of features considered by the saliency detector for (a)
faces, (b) motorbikes and (c) airplanes.

a traditional cross-validation strategy, the strategy that we have adopted for all the results
presented in this paper. One interesting question is whether the performance of the DSD is
very sensitive to the number of features chosen. Our experience is that, while it is impor-
tant to limit the number of features, there is usually a range that leads to results very close
to optimal. This is shown in Figure 5 where we present the variation of the classification
rate on the problem of the previous section for various classes on Caltech. Visual inspec-
tion of the saliency detection results obtained with feature sets within this range showed no
substantial differences with respect to that obtained with the optimal feature set.
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