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Abstract

We present a framework for the classification of visual pro-
cesses that are best modeled with spatio-temporal autore-
gressive models. The new framework combines the mod-
eling power of a family of models known as dynamic tex-
tures and the generalization guarantees, for classification,
of the support vector machine classifier. This combina-
tion is achieved by the derivation of a new probabilistic
kernel based on the Kullback-Leibler divergence (KL) be-
tween Gauss-Markov processes. In particular, we derive the
KL-kernel for dynamic textures in both 1) the image space,
which describes both the motion and appearance compo-
nents of the spatio-temporal process, and 2) the hidden state
space, which describes the temporal component alone. To-
gether, the two kernels cover a large variety of video clas-
sification problems, including the cases where classes can
differ in both appearance and motion and the cases where
appearance is similar for all classes and only motion is
discriminant. Experimental evaluation on two databases
shows that the new classifier achieves superior performance
over existing solutions.

1. Introduction
Figure 1 presents a sample from a large collection of visual
processes that have proven remarkably challenging for tra-
ditional motion representations, based on modeling of the
individual trajectory of pixels [1,2], particles [3], or objects
in a scene. Since most of the information required for the
perception of these processes is contained in the interaction
between the many motions that compose them, they require
a holistic representation of the associated motion field capa-
ble of capturing its variability without the need for segmen-
tation or tracking of individual components. Throughout the
years, some representations appeared particularly promis-
ing in this respect, e.g. the representation of the motion
field as a collection of layers [4]. However, only recently
some real success has been demonstrated through the mod-
eling of these processes as dynamic textures, i.e. realiza-
tions of an auto-regressive stochastic process with both a
spatial and temporal component [5, 6]. Like many other re-

cent advances in vision, the success of these methods de-
rives from the adoption of representations based on gener-
ative probabilistic models that can be learned from collec-
tions of training examples.

In the context of classification, detection, and recogni-
tion problems, the probabilistic representation has various
properties that are known to be assets for perception [7],
e.g. existence of principled inference formalisms that al-
low the fusion of diverse sources of information, the ability
to incorporate domain-knowledge in the form of prior be-
liefs, etc. There are, nevertheless, core aspects in which
it also has strong shortcomings. In particular, while it can
lead to optimal classifiers by simple application of Bayesian
decision theory, these classifiers have weak generalization
guarantees, and can be quite sensitive to the dimensional-
ity of the underlying feature space, or prone to over-fitting
when the models have large numbers of parameters. This
is a source of particular concern for the problems of Fig-
ure 1 since spatio-temporal autoregressive modeling tends
to require high dimensional feature and state spaces.

An alternative classification framework [8], which de-
livers large-margin classifiers of much better generalization
ability (e.g. the now popular support vector machine), does
exist but has strong limitations of its own. For the classifi-
cation of spatio-temporal data-streams, the most restrictive
among these is a requirement for the representation of those
data-streams as points in Euclidean space. These points are
then mapped into a high-dimensional feature space by a ker-
nel function that transforms Euclidean distances in domain
space into distances defined over a manifold embedded in
range space. The Euclidean representation is particularly
troublesome for spatio-temporal processes, where different
instances of a process may have different temporal extents
(e.g. two similar video streams with different numbers of
frames), or be subject to simple transformations that are
clearly irrelevant for perception and classification (e.g. a
change of sampling rate), but can map the same data-stream
into very different points of Euclidean space.

Recent developments in the area of probabilistic kernels
have shown significant promise to overcome these limita-
tions. Probabilistic kernels are kernels that act on pairs of
generative probabilistic models, enabling simultaneous sup-
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Figure 1: Examples of visual processes that are challenging for traditional spatio-temporal representations: fire, smoke, the flow of a river stream, or the
motion of an ensemble of objects, e.g. a flock of birds, a bee colony, a school of fish, the traffic on a highway, or the flow of a crowd.

port for complex statistical inference, which is characteris-
tic of probabilistic representations, and good generalization
guarantees, which are characteristic of large-margin learn-
ing. Although the feasibility of applying these kernels to
vision problems has been demonstrated on relatively simple
recognition tasks, e.g. the recognition of objects presented
against a neutral background [9], we believe that this is un-
satisfactory in two ways. First, the greatest potential for im-
pact of probabilistic kernels is in the solution of classifica-
tion problems where 1) simple application of Bayesian de-
cision theory is likely to fail, e.g. problems involving large
state-space models and high-dimensional features, and 2)
the inappropriateness of the Euclidean representation makes
the traditional large-margin solutions infeasible. Second,
many of the recognition problems for which there are cur-
rently no good solutions in the vision literature, e.g. those
involving the processes of Figure 1, are exactly of this type.

Both of these points are addressed in this work, which
makes contributions at two levels. On one hand, we in-
troduce a procedure for the design of large-margin clas-
sifiers for spatio-temporal autoregressive processes. This
includes the derivation of a discriminant distance function
(the Kullback-Leibler divergence) for this class of processes
and its application to the design of probabilistic kernels. On
the other, we demonstrate the practical feasibility of large
margin classification for vision problems involving complex
spatio-temporal visual stimuli, such as the classification of
dynamic textures or the classification of patterns of highway
traffic flow under variable environmental conditions. The
new large-margin solution is shown to perform well above
the state of the art and to produce quite promising results for
difficult problems, such as monitoring highway congestion.

2. Modeling motion flow
Various representations of a video sequence as a spatio-
temporal texture have been proposed in the vision litera-
ture over the last decade. Earlier efforts were aimed at the

extraction of features that capture both the spatial appear-
ance of a texture and the associated motion flow field. For
example, in [10], temporal textures are represented by the
first and second order statistics of the normal flow of the
video. These types of strictly feature-based representation
can be useful for recognition but do not provide a proba-
bilistic model that could be used for kernel design.

More recently, various authors proposed to model a tem-
poral texture as a generative process, resulting in represen-
tations that can be used for both synthesis and recognition.
One example is the multi-resolution analysis tree method
of [11], which represents a temporal texture as the hierarchi-
cal multi-scale transform associated with a 3D wavelet. The
conditional probability distributions of the wavelet coeffi-
cients in the tree are estimated from a collection of training
examples and the texture is synthesized by sampling from
this model. Another possibility is the spatio-temporal au-
toregressive (STAR) model of [5], which models the inter-
action of pixels within a local neighborhood over both space
and time. By relying on spatio-temporally localized image
features these representations are incapable of abstracting
the video into a pair of holistic appearance and motion com-
ponents.

This problem is addressed by the dynamic texture model
of [6], an auto-regressive random process (specifically, a
linear dynamical system) that includes a hidden state vari-
able, in addition to the observation variable that determines
the appearance component. The motion flow of the video
is captured by a dynamic generative model, from which
the hidden state vector is drawn. The observation vector
is then drawn from a second generative model, conditioned
on the state variable. Both the hidden state vector and the
observation vector are representative of the entire image,
enabling a holistic characterization of the motion for the en-
tire sequence. For this reason, we adopt the dynamic texture
model in the remainder of this work.
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Figure 2: Example of the dynamic texture model: (top-left) frames from a traffic sequence; (bottom-left) the first three principal components; (right) the
state space trajectory of the corresponding coefficients.

2.1. The dynamic texture model
The dynamic texture model [6] is defined by

xt+1 = Axt + Bvt (1)

yt = Cxt + wt (2)

where xt ∈ R
n is a sequence of n-dimensional hidden

(state) random variables, yt ∈ R
m a m-dimensional se-

quence of observed (video frame) random variables, vt ∼iid

N (0, Inv
) a nv-dimensional driving process (typically n �

m and nv ≤ n), and wt ∼iid N (0, R) an observa-
tion noise process. The model is parameterized by Θ =
(A, B, C, R, x0), where A ∈ R

n×n
, B ∈ R

n×nv , C ∈
R

m×n
, R ∈ R

m×m, and x0 is a known initial state. Note
that Bvt ∼ N (0, Q) where Q = BBT . The covariance of
the observation noise is assumed to be i.i.d, i.e. R = σ2Im.

The sequence {yt} encodes the appearance component
of the video (video frames), and the motion component is
encoded into the state sequence {xt}. The hidden state is
modeled as a first-order Gauss-Markov process, where the
state at time t + 1, xt+1, is determined by the transition
matrix A, the state at time t, xt, and the driving process
vt. The image at time t, yt, is a linear combination of the
principal components of the entire video sequence, stored
in the columns of C, with each component weighted by the
corresponding coefficient in the state vector xt. Figure 2
shows an example of a traffic sequence, its first three prin-
cipal components, and the corresponding state space coeffi-
cients.

2.2. Parameter estimation
Given an image sequence (y1, . . . , yN ), it is possible to
learn the parameters of the dynamic texture which best
models the image observations. While asymptotically op-
timal solutions, in the maximum likelihood sense, exist
(e.g. N4SID [12]) the high dimensionality of the observed
image space makes such solutions infeasible for dynamic
texture models. A suboptimal (but tractable) alternative

[6] is to learn the spatial and temporal parameters sepa-
rately. If Y N

1 = [y1, . . . , yN ] ∈ R
m×N is the matrix of

observed video frames, its singular value decomposition
(SVD) Y N

1 = UΣV T is a natural decomposition into 1)
principal components (columns of U ) and 2) corresponding
state vectors (columns of ΣV T ). It is therefore natural to
rely on estimates of the form

Ĉ = U X̂N
1 = ΣV T (3)

where X̂N
1 = [x̂1, . . . , x̂N ] is a matrix of state estimates for

each frame. Given these state estimates, the transition ma-
trix is computed using the least-squares estimate of the lin-
ear dependence of the state between consecutive time steps
(assuming the state random variables have zero mean),

Â = X̂N
2 (X̂N−1

1 )† (4)

where M † = MT (MMT )−1 is the pseudo-inverse of M .
Finally, the estimate of the covariance of the driving process
is

Q̂ =
1

N − 1

N−1
∑

i=1

v̂iv̂
T
i (5)

where v̂t = x̂t+1 − Âx̂t.

3. Support vector machines and prob-
abilistic kernels

A support vector machine (SVM) [8] is a discrimina-
tive classifier that constructs a maximum-margin hyper-
plane between two classes using a set of training examples
{x1, . . . , xN} ∈ X . The SVM provides strong generaliza-
tion guarantees for learning and usually leads to improved
performance, outside the training set, when compared to
classical methods based on Bayesian decision theory [13].
The training examples that are most difficult to classify are
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referred to as support vectors, and determine the separating
hyperplane.

The SVM can be augmented by using the “kernel” trick,
which maps the training examples into a high-dimensional
non-linear feature space. This feature space transformation
is defined by the kernel function K : X × X → R. One
interpretation of the kernel function is that K(xi, xj) mea-
sures the similarity between the two points xi and xj in the
space X . A popular example is the Gaussian kernel, defined
as Kg(xi, xj) = exp(−γ‖xi − xj‖2).

If the training examples are represented as probabilistic
models (e.g. dynamic textures), the kernel becomes a mea-
sure of similarity between probability distributions. A prob-
abilistic kernel is thus defined as a mapping K : P × P →
R, where P is the space of probability distributions. One
such kernel is the Kullback-Leibler kernel [14], defined as

KKL(p, q) = e−γ(D(p‖q )+D(q‖p )) (6)

where D(p ‖q ) is the Kullback-Leibler (KL) divergence be-
tween the probability distributions p(x) and q(x) [16]

D(p ‖q ) =

∫

X

p(x) log
p(x)

q(x)
dx. (7)

The KL divergence is a natural distance measure between
two probability distributions, and the KL kernel in probabil-
ity space is analogous to the Gaussian kernel in Euclidean
space. The KL kernel has been shown to achieve very good
results in the domains of object [9] and speech [14] recog-
nition.

4. Probabilistic kernels for dynamic
textures

In this section we introduce a probabilistic kernel for visual
processes that can be modeled as dynamic textures.

4.1. General considerations
The dynamic texture model provides a probability distribu-
tion of the texture in both image and state space. This allows
the derivation of two kernels that can ground the classifi-
cation in either the appearance or the flow of the dynamic
texture. Grounding the classification on image space tends
to favor iconic pixel matches and leads to best performance
when the goal is to differentiate between dynamic textures
of different visual appearance (e.g. a flock of birds from a
school of fish in Figure 1). Under this approach, two se-
quences of distinct textures subject to similar motion can
be correctly identified. It is, however, not clear that the dy-
namic texture model is of great significance in this context:
a simple appearance classifier based, for example, on the
principal component decomposition of the sequences may

achieve good results. Ideally, the kernel based on the dy-
namic texture model should achieve performance at least as
good as that of a static kernel, when this is the case.

An alternative classification scenario is that where the
different classes have similar appearance and all the dis-
criminant information is contained in the motion flow. For
example, problems such as determining the level of traf-
fic on a highway, or detecting outliers and unusual events
(e.g. cars speeding or committing other traffic violations).
Since for these cases the iconic pixel matching inherent to
existing static kernels is clearly inappropriate, these are the
cases where dynamic kernels have the greatest potential for
improvement over the state of the art.

In summary, depending on the specific classification
problem, it may be advisable to ground the classification
on either the state space or the image space components of
the dynamic texture model. In the remainder of this section
we derive the KL kernel for these two representations.

4.2. Probability distributions
We start by obtaining the probability distributions of the
Gauss-Markov process [15] that models the state of the dy-
namic texture. The conditional probability of state xt given
state xt−1 follows from (1),

p(xt|xt−1) = G(xt, Axt−1, Q) (8)

=
1

√

(2π)n |Q|
e−

1

2
‖xt−Axt−1‖

2

Q (9)

where ‖x‖2
Q = xT Q−1x. Recursively substituting into (1),

xt = Atx0 +

t
∑

i=1

At−iBvi (10)

where the initial state x0 is known. Since xt is the sum of
t − 1 Gaussian random variables, it is also Gaussian

p(xt) = G(xt, µt, St) (11)

with mean and covariance given by

µt = Atx0 = Aµt−1 (12)

St =

t−1
∑

i=0

AiQ(Ai)T = ASt−1A
T + Q (13)

Let xτ
1 = (x1, . . . , xτ ) be a sequence of τ state vectors. The

probability of a state sequence is also Gaussian, and can be
expressed using conditional probabilities as

p(xτ
1) = p(x1)

τ
∏

i=2

p(xi|xi−1) (14)

= G(xτ
1 , µ, Σ) (15)
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where µ =
[

µT
1 · · · µT

τ

]T
and the covariance is

Σ =











S1 (AS1)
T · · · (Aτ−1S1)

T

AS1 S2 · · · (Aτ−2S2)
T

...
...

. . .
...

Aτ−1S1 Aτ−2S2 · · · Sτ











(16)

The image sequence yτ
1 is a linear transformation of the

state sequence, and is thus given by

p(yτ
1 ) = G(yτ

1 , γ, Φ) (17)

where γ = Cµ and Φ = CΣC
T + R, and C and R are

block diagonal matrices formed from C and R respectively.

4.3. Projection between state spaces
The KL divergence between state spaces cannot be com-
puted directly because each dynamic texture uses a different
PCA space. Instead, one state space must be projected into
the other by applying a sequence of two transformations: 1)
from the original state space into image space, and 2) from
image space into the target state space. If the original state
space is that of x1 and the target that of x2, this is the trans-
formation x̂1 = Fx1 with F = CT

2 C1. From (1),

xt+1 = A1xt + B1vt (18)

Fxt+1 = FA1F
−1Fxt + FB1vt (19)

x̂t+1 = Â1x̂t + B̂1vt (20)

and the transformation of a Gauss-Markov process with pa-
rameters (A1, B1, x01) is a Gauss-Markov process with pa-
rameters Â1 = (CT

2 C1)A1(C
T
2 C1)

−1, B̂1 = (CT
2 C1)B1,

and x̂01 = (CT
2 C1)x01. The KL divergence between

state spaces can now computed with this transformed state
model.

4.4. KL divergence between state spaces
The KL divergence rate between two random processes
with distributions, p(X) and q(X) over X = (x1, x2, . . .),
is defined as

D(p(X) ‖q(X) ) = lim
t→∞

1

τ
D(p(xτ

1) ‖q(xτ
1) ) . (21)

If p(xτ
1) and q(xτ

1) are the state probability distributions of
two dynamic textures parameterized by (A1, Q1, x01) and
(A2, Q2, x02), the KL divergence on the RHS of (21) is (see
Appendix for derivation),

1

τ
D(p(xτ

1) ‖q(xτ
1) ) =

1

2

[

log
|Q2|

|Q1|
(22)

+ tr(Q−1
2 Q1) − n +

1

τ
‖A1x01 − A2x02‖

2
Q2

+
1

τ

τ
∑

i=2

tr
(

ĀT Q−1
2 Ā(Si−1 + µi−1µ

T
i−1)

)

]
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Figure 3: Example of the convergence of the KL divergence rate versus
τ . The clustering of generative models in the same and different classes
can also be seen.

where Ā = A1 −A2, and Si−1 and µi−1 are the covariance
and mean associated with the state xi−1 of the first dynamic
texture, as calculated in (12) and (13). In practice, the KL
divergence rate can be estimated by setting τ to some large
number. Figure 3 shows a graph of some examples of the
KL between dynamic textures in state space. The KL rate
converges as τ increases, and the clustering between gener-
ative models in the same and different classes can be seen.

4.5. KL divergence in image space
The KL divergence rate between two image sequence dis-
tributions, p(Y ) and q(Y ) over Y = (y1, y2, . . .) is

D(p(Y ) ‖q(Y ) ) = lim
t→∞

1

τ
D(p(yτ

1 ) ‖q(yτ
1 ) ) (23)

The image probabilities p(yτ
1 ) and q(yτ

1 ) are both dis-
tributed as Gaussians with means γ1 and γ2 and covariance
Φ1 and Φ2 respectively, thus the KL divergence between
them is,

D(p(yτ
1 ) ‖q(yτ

1 ) ) =
1

2

[

log
|Φ2|

|Φ1|

+ tr(Φ−1
2 Φ1) + ‖γ1 − γ2‖

2
Φ2

− mτ
]

(24)

Direct computation of the KL divergence between image
sequences is intractable since the covariance matrices are
mτ × mτ , where m is the number of pixels in a frame.
Using several matrix identities, it is possible to rewrite the
terms of the image KL into a recursive form that is computa-
tionally efficient and only requires storing nτ ×nτ matrices
(recall n � m). For brevity, we omit the details here and
refer the reader to a companion tech report [17].

5. Experimental evaluation
We evaluate the performance of motion flow recognition
using the KL kernel on two video databases. The first
database contains many visually distinct classes. The sec-
ond database, based on traffic video, contains visually sim-
ilar classes, but with varying temporal characteristics.

5



Figure 4: Examples from the databases used for evaluation: (left) the dynamic texture database; (right) the traffic video database.

5.1. Dynamic texture database

The dynamic texture database used in [18] contains 50
classes of various texture, including boiling water, foun-
tains, fire, rippling water, waterfalls, and plants and flow-
ers swaying in the wind. Each class contains four grayscale
video sequences with 75 frames1 of 160× 110 pixels. Each
sequence was clipped to a 48×48 window that contained the
representative motion. Figure 4 (left) shows several exam-
ples of the video patches from the dynamic texture database.
Since almost all of the classes are visually distinct, the ap-
pearance component of the model is likely to be as impor-
tant for classification as the motion component.

5.2. Traffic video database

The traffic video database consists of 254 video sequences
of highway traffic in Seattle, collected from a single sta-
tionary traffic camera over two days [19]. The database
contains a variety of traffic patterns and weather conditions
(e.g. overcast, raining, sunny, rain drops on the camera
lens). Each video was recorded in color with a resolution
of 320 x 240 pixels with between 42 to 52 frames at 10
fps. Each sequence was converted to grayscale, resized to
80 x 60 pixels, and then clipped to a 48 x 48 window over
the area with the most total motion. Finally, for each video
clip, the mean image was subtracted and the pixel intensi-
ties were normalized to have unit variance. This was done
to reduce the impact of the different lighting conditions.

The database was labeled by hand with respect to the
amount of traffic congestion in each sequence. In total there
were 44 sequences of heavy traffic (slow or stop and go
speeds), 45 of medium traffic (reduced speed), and 165 of
light traffic (normal speed). Figure 4 (right) shows a repre-
sentative set of clips from this database. All clips are very
similar in that the views are obtained with a fixed camera

1The four videos in each class originate from 2 videos with 150 frames
each.

facing the same stretch of road, and the motion is always in
the same direction and confined to the same area. Thus, an
effective classifier for this problem must be able to distin-
guish between the different patterns of flow, i.e. the under-
lying temporal process.

5.3. Experiment setup

The parameters of the dynamic texture model were learned
for each video clip using the method of Section 2.2. To en-
sure that the KL divergence converges, the transition matrix
A was scaled so that the largest eigenvalues lie on the unit
circle. In addition, the covariance of the driving process
was regularized to prevent problems with singular matrices,
i.e. we set Q′ = Q + In. All classification results were
averaged over four trials. In each trial the data set was split
differently with 75% used for training and cross-validation,
and 25% reserved for testing.

For the dynamic texture database, SVMs were trained
using the KL kernel in image space (τ = 25), and for the
traffic video database, the SVMs were trained with the KL
kernel in state space (τ = 250). A one-versus-all scheme
was used to learn the multi-class problem, and the C and γ

parameters were selected using 3-fold cross-validation over
the training set. The SVM training and testing was per-
formed using the libsvm software package [20]. We also
tested a nearest neighbor (NN) classifier using the image
space and state space KL as distance measures. Finally,
for comparison with the state-of-the-art, a nearest neigh-
bor classifier was implemented using the Martin distance
[21,22] as suggested in [18]. The Martin distance is related
to the principal angles between the subspaces of the ex-
tended observability matrices of two dynamic textures. For
this experiment, the extended observability matrices were
approximated with τ = 250.
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Figure 5: Evaluation of the KL kernel on two databases: (left) classification accuracy on the dynamic texture database using the SVM with the image KL
kernel; (right) classification accuracy on the traffic video database using the SVM with the state KL kernel. In both plots, the accuracy of nearest neighbors
classification using the appropriate KL distance and the Martin distance is also shown. The x-axis is the number of principal components (n) used in the
dynamic texture model.

5.4. Results

The results on the dynamic texture database, presented in
Figure 5 (left), show that the image-based KL classifiers
performs significantly better than the Martin distance clas-
sifier (an improvement of the best classification accuracy
from 89% to 96%). Note that the accuracies of the image
KL classifiers improve as the number of principal compo-
nents n decreases. This was expected since the dynamic
texture database contains many visually distinct classes for
which the appearance components is more discriminant
than the motion. In fact, in the degenerate case of n = 0,
the video is modeled as a Gaussian whose mean is the mean
image of the video sequence, and covariance is the devia-
tion of the frames from this mean. Note how, by achiev-
ing top performance for a small number of components,
the image-based KL classifiers virtually become static clas-
sifiers. In contrast, the Martin distance nearest neighbors
classifier does rather poorly with a small number of com-
ponents. Hence, although performance improves as n in-
creases, it never reaches an accuracy comparable to that of
the KL-based classifiers.

Figure 5 (right) presents the results obtained on the traf-
fic video database. It can be seen from this figure that the
two state KL classifiers outperform the Martin NN classi-
fier on this database. Furthermore, all classifiers improve
as the number of principal components increases, confirm-
ing the fact that a static classifier would do rather poorly
on this database. Comparing the performance of the state
KL classifiers versus the Martin NN counterpart it can be
concluded that 1) the state KL-SVM combination is consis-
tently better, and 2) the state KL-NN combination is better
for n ≥ 15 and also achieves a higher maximum accuracy.

Overall, the image and state KL classifiers outperform
the Martin distance nearest neighbor method in classifica-
tion tasks with both visually distinct video textures, and vi-

sually similar, but temporally distinct, video textures. The
KL classifiers are also capable of spanning the gamut from
static to highly-varying dynamic classifier and, therefore,
provide a generic framework for the classification of a large
variety of video streams. Comparing the performance of
the two KL classifiers, it is clear that SVM-KL combination
achieves better classification performance than NN-KL. In
particular, the greater robustness of the SVM classifier to a
poor selection of the number of components indicates that
it has better generalization ability.

Finally, we tested the robustness of the dynamic tex-
ture and KL classification framework by using the trained
classifiers to label a set of 12 sequential traffic videos that
spanned an hour at night, and contained a traffic jam (Fig-
ure 6). The NN-KL and SVM-KL correctly labeled the
12 video sequences, including the event of the traffic jam
(heavy traffic), and the events of reduced speed (medium)
traffic leading up to and immediately following the traf-
fic jam. This is particularly interesting since the classifiers
were trained with daytime images containing normally lit
cars, yet they are able to correctly label nighttime images
where the cars are represented as headlights and a pair of tail
lights. These results provide evidence that the dynamic tex-
ture model is indeed extracting relevant motion information,
and that the proposed classification framework is capable
of using the motion model to discriminate between classes
of motion. We are currently exploring how this framework
could be used for tracking highway congestion, and detec-
tion of outlier events such as speeding cars and accidents.

Appendix

Given that p(x) and q(x) are distributions of Markov pro-
cesses, (21) can be simplified using the chain rule of diver-
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Figure 6: Twelve nighttime traffic videos with a traffic jam.

gence [23],

D(p(xτ
1) ‖q(xτ

1) ) = D(p(x1) ‖q(x1) )

+

τ
∑

i=2

D(p(xi|xi−1) ‖q(xi|xi−1) )

For two dynamic textures, the KL of the first state vector is

D(p(x1) ‖q(x1) ) =
1

2
‖A1x01 − A2x02‖

2
Q2

+
1

2
log

|Q2|

|Q1|
+

1

2
tr(Q−1

2 Q1) −
n

2

and the conditional KL term is

D(p(xi|xi−1) ‖q(xi|xi−1) )

=

∫

p(xi−1)

∫

G(xi, A1xi−1, Q1)

· log
G(xi, A1xi−1, Q1)

G(xi, A2xi−1, Q2)
dxidxi−1

=

∫

p(xi−1)
1

2

[

‖(A1 − A2)xi−1‖
2
Q2

+ log
|Q2|

|Q1|

+ tr(Q−1
2 Q1) − n

]

dxi−1

=
1

2

[

tr(ĀT Q−1
2 Ā(Si−1 + µi−1µ

T
i−1)) + log

|Q2|

|Q1|

+ tr(Q−1
2 Q1) − n

]

where Ā = A1 − A2, and in the last line we have used the
property that if p(x) has mean µ and covariance Σ,

∫

p(x) ‖Ax‖2
B dx = tr(AT B−1A(Σ + µµT ))

Finally, (22) is obtained by summing the initial KL term and
the conditional KL terms from above.
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